Bio-fouling prevention and experiences with the solidstandards in HZG

Wilhelm Petersen, Helmholtz-Zentrum Geesthacht, Germany

February 09, 2012

Outline

- General biofouling prevention in FerryBox system
- Experiences with Scufa-II and secondary solid standard
- PSICAM: Experiences with a flow-through system
 - TSM measurement
 - Chlorophyll-a measurements
 - changing of reflectivity due to biofouling

FerryBox Flow-Through System

Centre for Materials and Coastal Research

Measured Variables

- temperature
- salinity
- turbidity
- chlorophyll

•oxygen,
•pH
•algal groups
•Nutrients
•pCO2

Main Features:

- running autonomously
- controlled by GPS position
- self cleaning (after each cruise)
- + automatic water sampler for further lab analyis

Procedure after each cruise:

- Flushing the whole system with freshwater
- high pressure rinsing of certain sensors (pH, fluorescence, oxygen)
- Flushing with acidified water (5-10min)
 - Sulfuric acid (pH ~ 2) in order to remove biofilms
 - oxalic acid (removing of iron coatings)

Helmholtz-Zentrum

Biofouling without cleaning after one week Stationary FerryBox Cuxhaven (Elbe estuary)

Experiences with SCUFA-II secondary solid standard Centre for Materials and Coastal Research

Helmholtz-Zentrum

FerryBox aboard Lysbris Check of Scufa-II with secondary solid standard <u>before</u> and <u>after manual cleaning</u> (May 2010 until Feb 2011)

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

Lysbris

→ High variability but no significant trend

→Less variability but significant trend of less fluorescent yield due to high sediment load (sand) destroying the surface of the windows

SCUFA-II Cuxhaven Change of sensitivity due to high sediment load entre for Materials and Coastal Research

9

Helmholtz-Zentrum

Experiences with the Point-Source Integrating-Cavity Absorption Meter (PSICAM)

Point-Source Integrating-Cavity Absorption Meter (PSICAM) Working principles (lab version)

Helmholtz-Zentrum Geesthacht

Differentiation of algal groups from absorption spectra

Point-Source Integrating-Cavity Absorption Meter (PSICAM) Working principles (flow-through version)

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

Test Version of FlowThrough PSICAM

Working principles

15

Working principles

Workflow for continuous measurements

Measurement of purified water and Nigrosin dye solution with a known absorption coefficient.

Sample measurement in a (down to) 5 sec interval with an integration time of 1024 ms.

Flushing sequentially with Ethanol/Extran[®] and 0.5% Na-hypochlorite (\triangleq 0.06% active CI for bleaching). Manually cleaning with ethanol at start of the cruise.

Between sample measurements purified water is measured to determine changes in light regime and to get a blank value for absorption calculation.

Centre for Materials and Coastal Research

Samples of in situ measurements ("TSM")

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

Samples of in situ measurements ("TSM")

Centre for Materials and Coastal Research

Samples of in situ measurements ("Chl-a")

2011

Centre for Materials and Coastal Research

Samples of in situ measurements ("Chl-a")

Correlation of PSICAMs at 664 nm during Heincke cruise HE353, April 2011

Comparison to fluorescence measurements

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

Comparison to fluorescence measurements

Comparison to turbidity measurements

Centre for Materials and Coastal Research

Comparison to turbidity measurements

General problems

The reflectivity of the PSICAM is strongly affected by biofilms or other contamination. But even after intense cleaning cycles including bleaching the reflectivity scatters during a cruise.

General problems

- For calibration, a low concentrated Nigrosin dye solution with a known absorption coefficient is needed, but it is not stable
 - Automated on site preparation of calibration dye? But how to determine its absorption coeff.?
 - Solid matter calibration dye (e.g. ball) with a known absorption?
 - But how to bring it in and out the cavity?
 (moving parts may be problematic, shutter needed...)
- Just very fresh purified water (MilliQ, 18.2 M Ω) must be used for calibration solutions and reflectance determination
 - Installation of automated water purification module besides the PSICAM?

Conclusions

- The flow-through PSICAM delivers absorption data in a high frequency from 400 to 720 nm
- Comparison to lab PSICAM and fluorescence measurements shows a good correlation
- The setup will be mounted in a user-friendly frame
- We have to overcome some problems:
 - light source: change to LED
 - automatic cleaning, calibration, and reference measurements
 - calibration standard: solid matter?
 - provide purified water for reference measurements

- Installation for a long-time test in Cuxhaven FerryBox Container
- Integration in international project "ProTool" (www.protool-project.eu)
- An in situ prototype is constructed with TriOS

 In combination with specific absorption spectra of algae, an identification of classes may be possible by fingerprints "quasi-online" (Dissertation of Steffen Gehnke, and further work to do)

Thanks for your attention!