Metrology for oceanography:

Main issues and Ifremer's actions

Florence Salvetat florence.salvetat@ifremer.fr
Head of metrology laboratory

The metrology laboratory:

Dedicated to physical and physico-chemical parameters:

Temperature, pressure, salinity (conductivity), velocity, ocean current, dissolved oxygen, pH, turbidity, fluorescence.

The chemical laboratory: (A. Laes)

Ammonia, nitrates/nitrites, silicates.

Salinometer

Fresh water or seawater bath (8001)

Towing canal

Formazin solutions

1 - Context

2 - Main issues

3 – On going studies

Sharing scientific measurements through international networks

Huge diversity of measurement instruments and technologies

Metrology

Traceability to SI units

Efforts for international recognition

1 - Context

2 - Main issues

3 – On going studies

Temperature calibration: (Cofrac)

•Range:
$$-10^{\circ}$$
C to $+60^{\circ}$ C
with U= $+/-4$ m°C to 13 m°C

•Current procedure:

comparison in temperature regulated bath for different values of temperature

Fresh water or seawater bath (800l)

Issues:

Reduce uncertainties (few m°C)

Pressure calibration: (Cofrac)

•Gauge P: Range: 0.1 MPa to 80MPa with U # $1.10^{-4} \times P_{Gauge}$

Current procedure:comparison for different values of pressure with a pressure balance

Issues:

Absolute pressure measured, sea pressure delivered, gauge pressure calibrated

Current calibration:

•Range: 0.1m/s to 1m/s

•Current Procedure:

comparison for different values of current
(mechanical current meter)

Acoustic Doppler current meter:

•Wall reflexion of the beam

Particles spreading needed

Dissolved oxygen calibration:

• Range: from 0µmol/l to over-saturation

•Current Procedure:

- calibration at 0% (sodium sulphite) and 100% (stirred water)
- Winkler titration as standard method

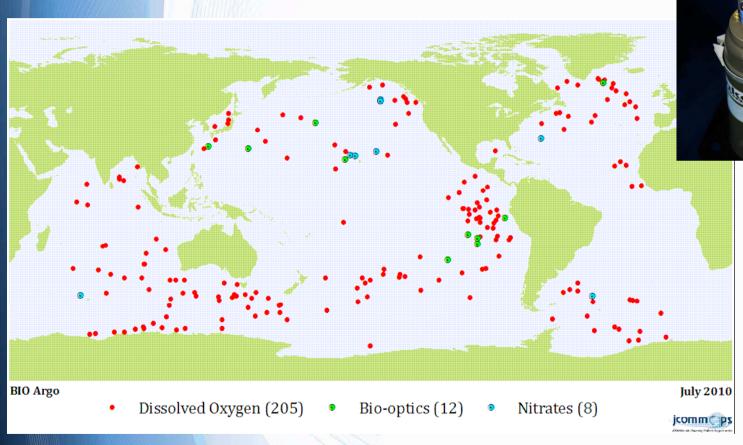
Issues:

•Linearity control: 1 or 2 calibration / adjustment points are not enough

Dissolved oxygen calibration:

Issues:

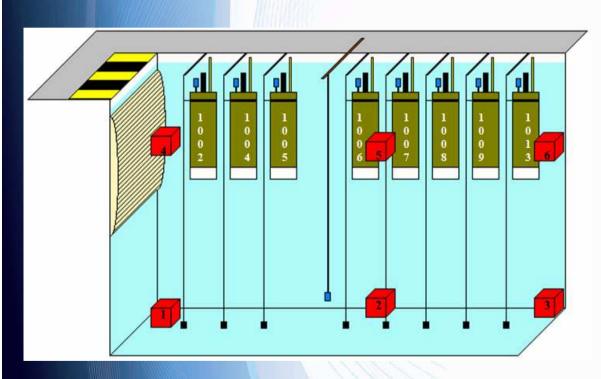
•Substance matrix: seawater

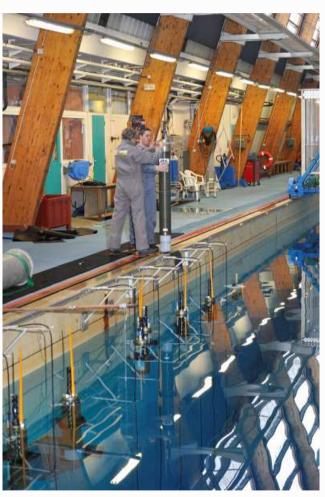

(Winkler's method overestimates dissolved oxygen in seawater: Iodate interference and its oceanographic implication. George T.F. Wong and Kuo-Yuan Li, Marine Chemistry, 2009, vol.115, n°1-2, pp.86,91)

•Lack of understanding of optical sensors (optodes) behaviour (interferences, corrosion issues, interactions with some materials, ...)

Dissolved oxygen calibration:

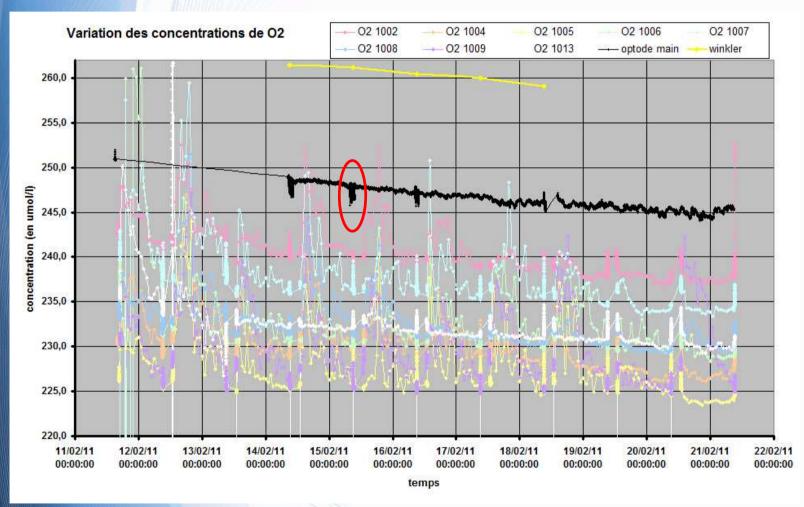
Argo project





Dissolved oxygen calibration:

Argo project



Ifremer - Argo oxygen meeting - May 2011 - V. Thierry et al.

Dissolved oxygen calibration:

Argo project

Ifremer - Argo oxygen meeting - May 2011 - V. Thierry et al.

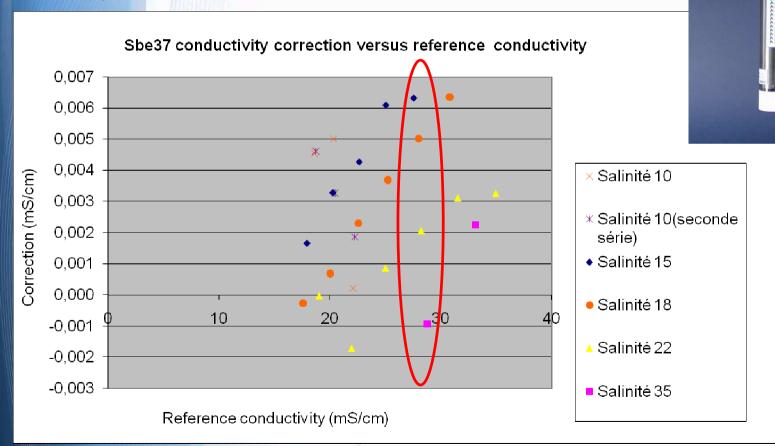
Salinity calibration:

• Range: from 2 to 42

•Current Procedure:

calibration in temperature regulated bath for different stages of temperature and salinity (natural seawater diluted with fresh water)

Issues:


•No Certified Reference Material (no traceability)

Issues:

•Conductivity sensor response dependent on salinity

pH calibration:

- Range: from 0 to 14
- •Current Procedure:

 calibration with standard pH solutions

Issues:

•Standard matrix: no seawater → no Certified Reference Material (no traceability)

Turbidity calibration:

- Range: from 0 to 1000 FNU
- •Current Procedure:

 calibration with formazin solutions

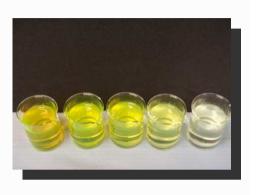
Issues:

- Not the measurand to achieve (suspended matter)
- •No CRM (no traceability)
- •Lack of understanding of optodes behaviour (signal drift, noise, ... interactions with parameters to be found)

Fluorescence calibration:

Context: chlorophyll *a* calibration with pigment extraction:

- Time consuming
- Dependent on algae species
- Dependent on algae physiology


Ifremer's choice:

Perform calibration in fluorescence rather than in **chlorophyll** *a* concentration

Fluorescence calibration:

- •Range: depending on sensor / fluorophore
- •Current Procedure:
 calibration with fluorescein solutions

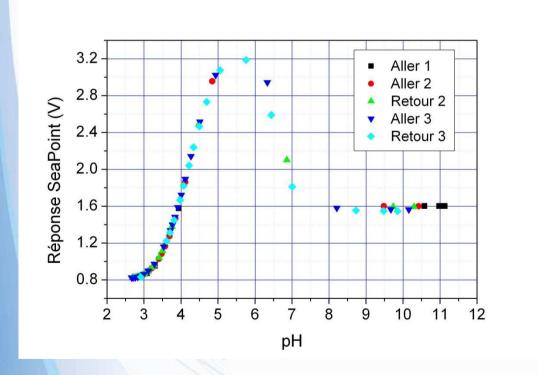
Fluorescein

Issues:

- •Controls only the drift and the stability of measurement
- Not the measurand to achieve

(μ g/l vs chlorophyll a or algae estimation)

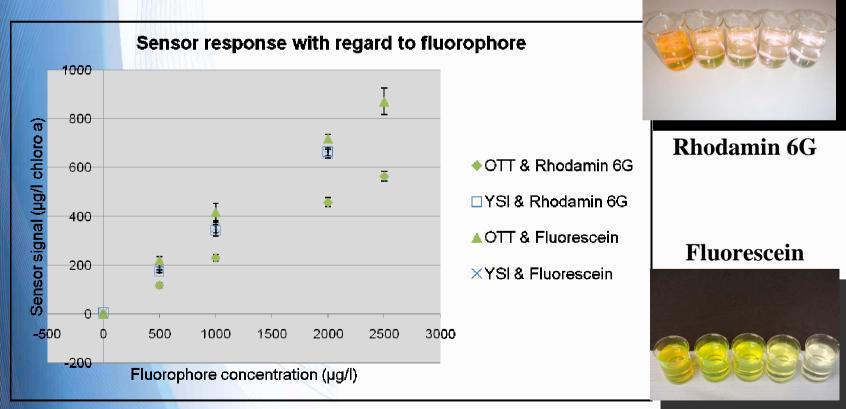
No Certified Reference Material (no traceability)



Fluorescence calibration:

Issues:

•pH influence on fluorescein


Fluorescence calibration:

Issues:

•Sensor comparison impossible: sensor response dependent

on technology

Fluorescence calibration:

Issues:

•Lack of understanding of optode response (signal drift, noise, ... interactions with parameters to be found)

Traceability?

Parameters										
Temperature	Pressure	Current	02	рН	Salinity	Turbidity	Fluorescence			
YES	YES	YES / NO (sensor technology)	YES -> NO	YES -> NO	NO	NO	NO			
Regulated bath + Pt25 reference thermometer	Relative pressure balance	Towing canal	Regulated bath + Winkler titration	Standard pH solution	Salinometer calibrated by IAPSO standard	Formazin solutions	Fluorophore solutions			

No norm in

technology

- No representativeness (substance matrix, ...)
- No relation to SI units
- Not universal in regard to the different technologies

No reference material or No reference method


Main issues Consequences: Validation issues **Validation** Calibration **Decision criterion** Trueness correction ± U Scientific, norm, legal requirement **Conformity?** Data Data Criterion **Calibration results:** trueness correction ± U Data qualification (Right/Wrong) Data base

Current calibration:

- •Contact with accreditated laboratories for acoustic Doppler current meter (Metas)
- •Evaluate the calibration feasibility in the towing canal at Brest and in the water vein at Boulogne

Oxygen calibration:

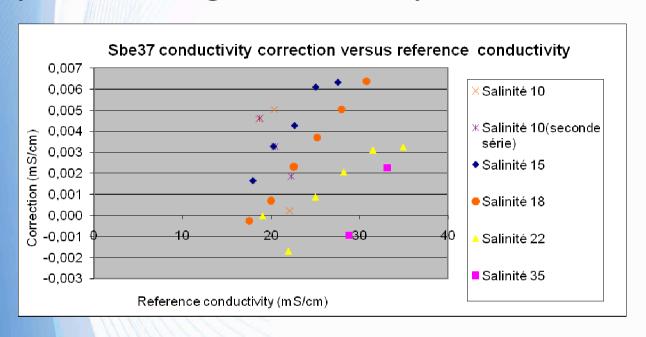
•Characterization of an oxygen multi-level bench

- Stability:
 - $< 0.5 \mu M$ within 1 hour
 - long stability levels(several hours)

- ✓ Lowest level: nearly 0%
- $\sim 0_2$ homogeneity: $< 2\mu M$ (! first results)

Oxygen calibration:

•Hypox, Argo projects:


Inter-laboratory comparison (Australia, USA, Germany (2), manufacturers):

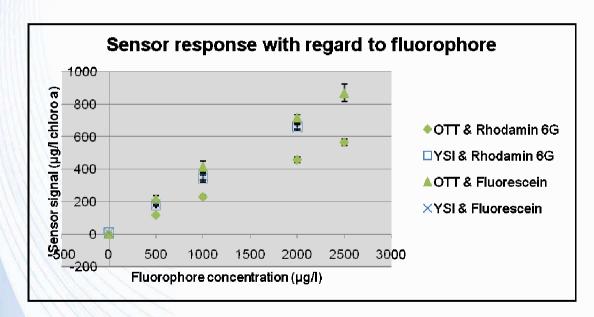
- Chemical systems
- Bubbling systems
- mixed waters saturated with gas
- V ...
- Jerico: calibration CIL ? (sea tech week)

Salinity calibration:

•Carry on the investigation on salinity effect

- Uncertainty budget (CIL ?)
- ENV05 Ocean project (European Metrology Research Programme): reference methods and standards

Turbidity calibration:


•Calibration protocols improvements on multi-parameter probes (YSI, OTT, NKE):

- **✓ Temperature influence**
- ✓ Stirring effect

Fluorescence calibration:

•Calibration protocol studies on multi-parameter probes (YSI, OTT, NKE, Seapoint, Seatech): fluorophore effect

• In situ campaign studies (YSI, OTT, NKE, Seapoint, Seatech) with chlorophyll a extraction.

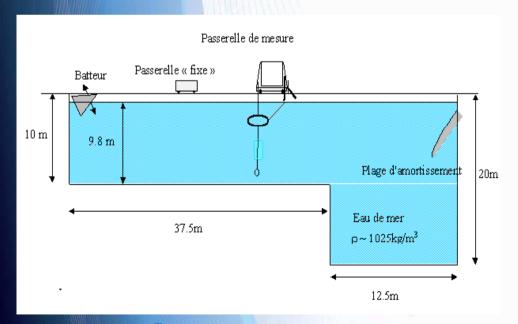
	700000	X	70/								
Parameters											
Temperature	Pressure	Current	02	рН	Salinity	Turbidity	Fluorescence				
YES	YES	YES / NO (sensor technology)	YES -> NO	YES -> NO	NO	NO	NO				
Regulated bath + Pt25 reference thermometer	Relative pressure balance	Towing canal	Regulated bath + Winkler titration	Standard pH solution	Salinometer calibrated by IAPSO standard	Formazin solutions	Fluorophore solutions				
Protocol evaluation											

New calibration bench
(temperature and
O₂ regulated/salinity levels)
+ Uncertainty estimate
+ Accreditation

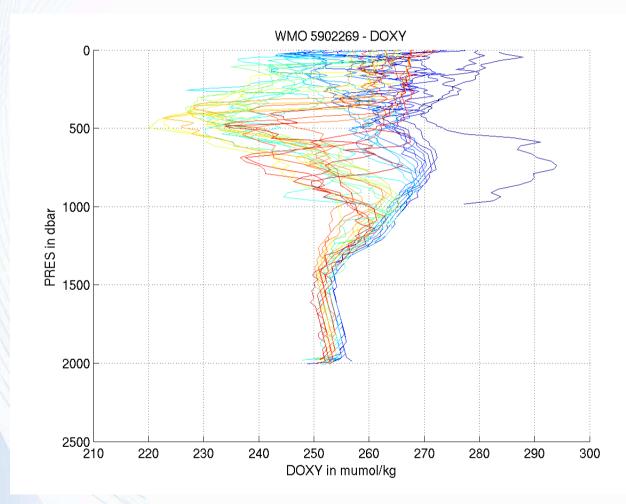
Uncertainty estimate Salinity influence

Calibration Protocols improvements

National or international inter-laboratory comparisons projects


Metrology laboratory collaboration (eg. Aquaref)

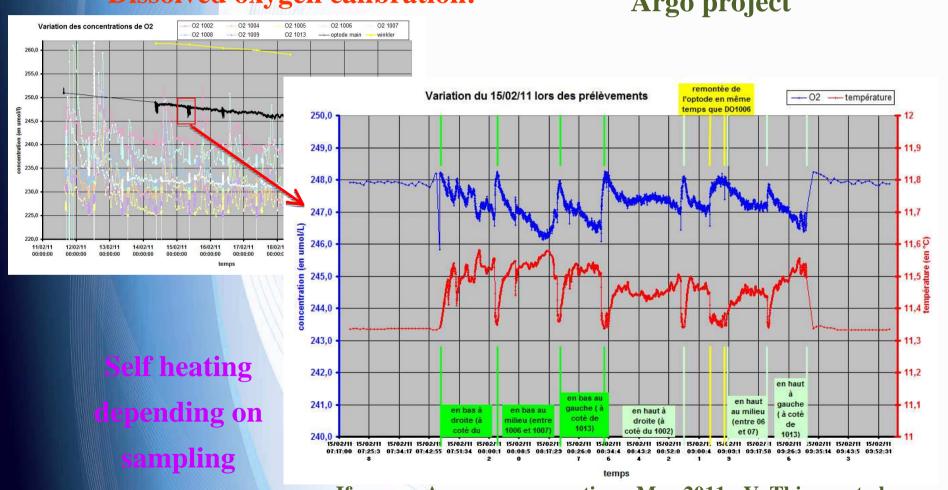
THANKS FOR YOUR ATTENTION.



Dissolved oxygen calibration:

Argo project

Dryness


Ifremer - Argo oxygen meeting - May 2011 - V. Thierry et al.

Traceability to SI units?

Argo project

Ifremer - Argo oxygen meeting - May 2011 - V. Thierry et al.

Some ideas:

• For "New" sensors development: Involve metrology in the first steps of development

Technical choices

Ensure method validation

- For unknown parameters metrology:
 - increase collaborations between metrology laboratory concerned (Aquaref)
 - organise / participate Inter Laboratory Comparisons
 - operate a number of sensor in parallel to increase results reliability

Some ideas:

• Recondition sensors in situ (standard signal or reagent)

To follow some sensor specifications (qualification of the drift, measurement trueness and repeatability)

!: stability of reagent/standard need to be evaluate (degradation and biodegradation, drift, ...)

