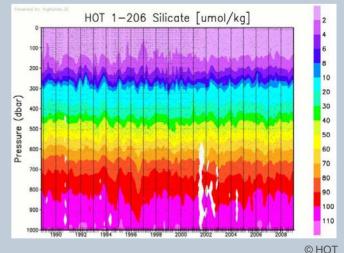
In situ monitoring of nutrients in marine waters

Agathe LAËS-HUON

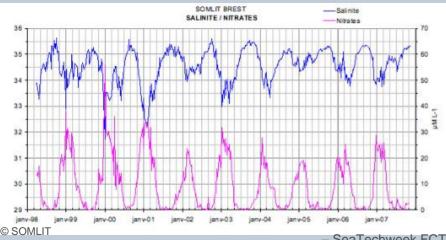
Ifremer, centre de Brest

RDT/EIM

Technology, Research and Development Department Electronics, Software and *in situ* measurements


- SeaTechweek FCT - Brest 10th October 2012

Long term monitoring of nutrients concentrations


• to deconvolute natural signal from anthropogenic perturbation

in order to understand and to predict effects on global climate change

HOT : Hawaii Ocean Time Series BATS : Bermuda Atlantic Time Series JGOFS

• to contribute to the Marine Strategy Framework Directive (MSFD)

SOMLIT (CNRS/INSU) ROCCH, RNC (Ifremer)

Marine Strategy Framework Directive (MSFD)

Determination of a Good Environmental Status, based on 11 qualitative descriptors

Eutrophication

Ecosystem response to an over enrichment of waters by nutrients such as nitrogen or phosphorus

(Ferreira et al. 2011 ECSS)

excessive algal growth

harmful algal blooms

Phaeocystis bloom

Courtesy Phil Monbet

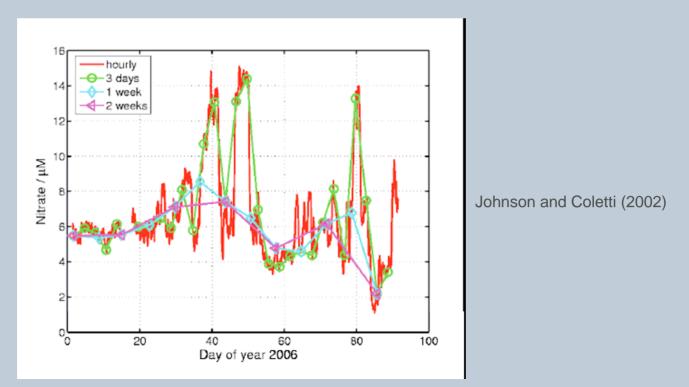
- SeaTechweek FCT - Brest 10th October 2012

Usual sampling strategy

Every month from November to February and twice a month from March to October

Ammonia, nitrate, nitrite, particulate nitrogen, total nitrogen, phosphate, total phosphorus, particulate phosphorus and silicate

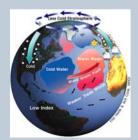
Sampling is realized at sub-surface (0 - 1 m)



- SeaTechweek FCT - Brest 10th October 2012

Nutrients distribution vary widely in marine ecosystems

episodic and transient events missed

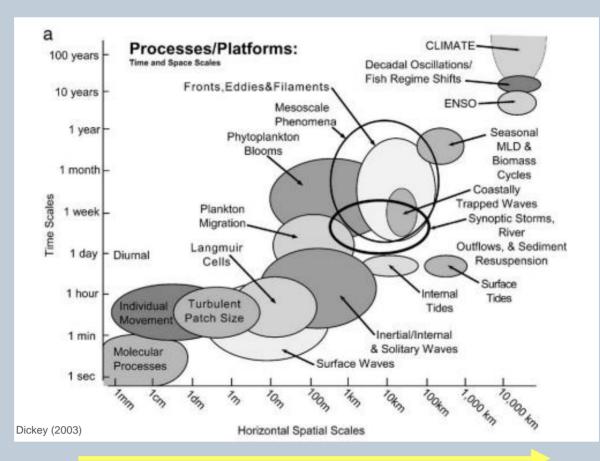

increase temporal and spatial resolution of sampling and analysis (Prien et al. 2007)

given the spatial extent of the MSFD and the sampling frequency, innovative approaches are required to allow meaningful monitoring (Ferreira et al. 2011 ECSS)

from years, weeks, days, hours to seconds ...

from piers, buoys, profilers to AUVs ...

from one dimension to 3D ...



- SeaTechweek FCT - Brest 10th October 2012

Essential to develop in situ instrumentation for nutrient analysis

robust

miniaturised

small energy consumption

few maintenance

High frequency of analysis

precise, accurate, high level of detection

not influenced by biofouling

If it's cheap, it's even better !

Various types of *in situ* instruments for nutrient analysis

					Chemical species				
	Product	Brand/ Research Institute	Reference	Detection technique	Nitrate	Nitrite	Ammonium	Phosphate	Silicate
Europe	ANAIS	Prototype/ LEGOS	Vuillemin 1999/Thouron et al 2003	wet chemistry	Х	Х		Х	Х
11111	ANESIS	Prototype/ LEGOS	Thesis Lacombe, Lacombe et al 2007	electrochemical				Х	Х
	CHEMINI	lfremer	Vuillemin et al. 2009	wet chemistry	Х	Х	Х	Х	Х
	DPA Pro	SYSTEA S. p. A.	Gunatilaka et al. 2009	wet chemistry	Х	Х	Х	Х	
	Props UV	TriOS	Zielinski et al. 2011	optical	Х				
	Prototype	University of Hull/ UK	A. Webster 2010	ion Chromatography	Х	Х	Х	Х	
	Prototype	University of Hull/ UK	Al-Gailani et al. 2007	wet chemistry			Х		
	Prototype	NOC/ Nano research group	Beaton et al. 2011	wet chemistry		Х			
	Prototype	NOC/ Nano research group	Legiret 2010	wet chemistry				Х	
	Prototype	NCSR, Dublin	Bowden et al. 2003	wet chemistry/ microfluidic				Х	
	Prototype	GKSS, Germany	Franck et al. 2006	wet chemistry			Х	Х	
	SIA analyser	Helmholtz-Zentrum Geesthacht		wet chemistry			Х	Х	18
	WIZ	SYSTEA S. p. A.	Vuillemin et al. 2009b	wet chemistry	Х	Х		Х	Х
International	APNA	SubChem Systems	Egli et al. 2009	wet chemistry	Х	Х	Х	Х	
	AutoLAB 4	EnviroTech		wet chemistry	Х		Х	Х	Х
	CYCLE	Wet Labs	Barnard et al. 2009	wet chemistry				Х	
	Digiscan NH4	Mbari	Plant et al. 2009	wet chemistry			Х		
	EcoLAB 2	EnviroTech		wet chemistry	Х	Х	Х		Х
	ISUS V3	Saltantic	Jonhson 2002/ Sakamoto et al. 2009	optical	Х				
	NAS-3X	EnviroTech		wet chemistry	Х		Х	Х	Х
	NITRATAX	HACH		optical					
	Nutrient ISES	YSI		ion selective electrodes	Х		Х		
	Nutrient ISES	HACH Environmental		ion selective electrodes	Х		Х		
	SCANNER	Mbari	Johnson et al. 1994	wet chemistry					Х
	SEAS	University of South Florida	Adornato et al. 2007/ Steimle 2002	wet chemistry	Х	Х		Х	
	SubChemPak	SubChem Systems		wet chemistry	Х	Х	Х	Х	Х
	SUNA	Satlantic		optical	Х				
	TROLL 9500	In-situ Inc.		ion selective electrodes	Х		Х		
	Ysi 9600 (Digiscan)	Ysi	Weeks and Johnson 1996 Mbari	wet chemistry	Х				

Huge disparity in terms of detection, analytical performances

What we have done so far at the Ifremer Brest ...

• Wet chemistry on a buoy : temporal case study

• Optical Sensor on a profiler : spatial and temporal case study

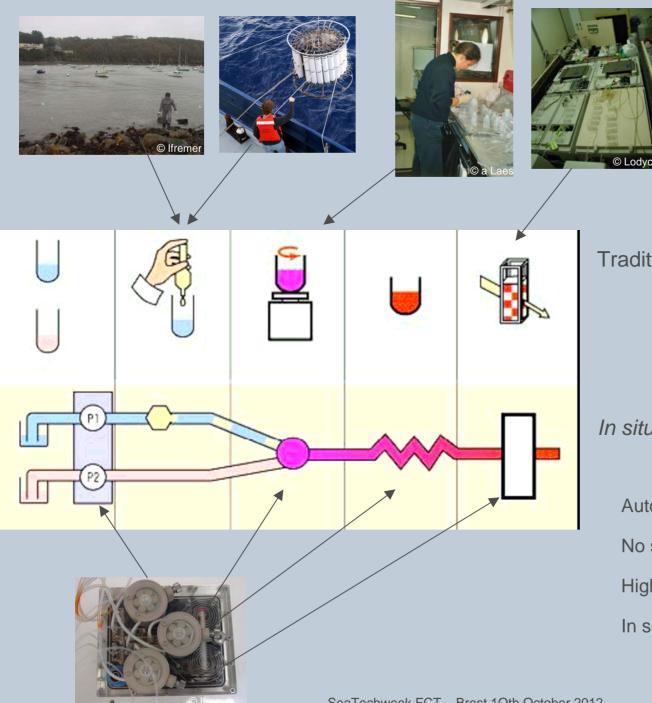
• CHEMINI

- Characteristics
- Deployment on the Molit Buoy
- Monitoring of the Bay of Vilaine

- ISUS integrated into a Provor profiling float
 - Mechanical and electronical integration
 - Deployment in the Bay of Brest
 - Monitoring in the Mediterranean Sea

Conclusions

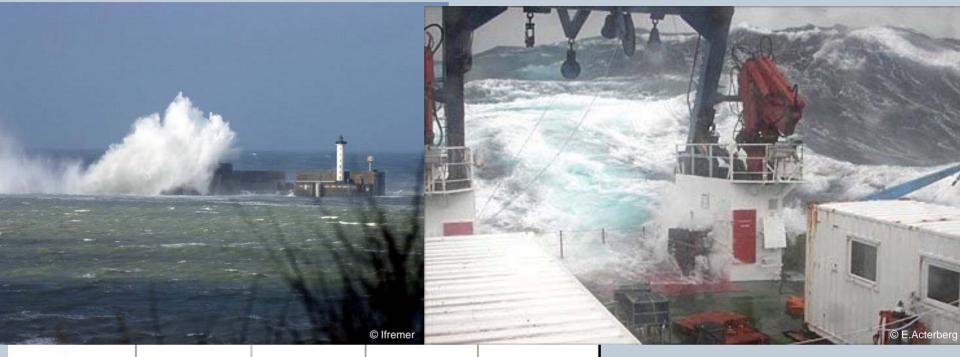
• First generation of chemical analysers in the 90's


ALCHIMIST

Daniel *et al.* 1995, Floch *et al.* 1998, Le Bris *et al.* 2000, Laës *et al.* 2005, Sarradin *et al.* 2005

• New generation of chemical analysers in 2004 CHEMINI: CHEmical MINIaturised analyser

Vuillemin et al. 2009


Traditional sampling and analysis

In situ flow injection analyser

Automated (less contamination) No sampling cruise

High frequency of measurement

In situ calibration

High quality and high frequency data even when harsh and hostile conditions are encountered

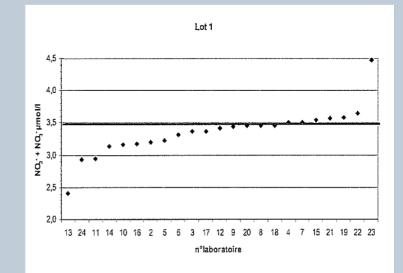
Flow injection analysis (FIA) with spectroscopic detection

weight : 5 kg (without reagents)

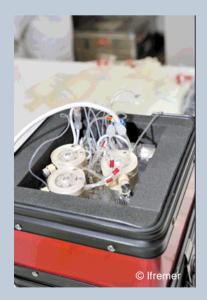
Dimensions : 233mm h x 148mm l x 121mm L

Power supply : 12 V, Consumption : 0,5A - 12V

Remotely controlled by automate


Ammonia	(4)	Silicate	(1)
Nitrate	(2)	 Phosphate 	(1)

Figures of merit for nitrate determination


Detection limit : 0,017 μ mol.I⁻¹ NO₃ Linearity : 0 -100 μ mol.I⁻¹ NO₃ Precision : 3,1% NO₃ (1,5 μ mol.I⁻¹ , n = 5) Measure frequency : 13 minutes NO₃

Interlaboratory comparison (EILs)

Verify the accuracy of the method

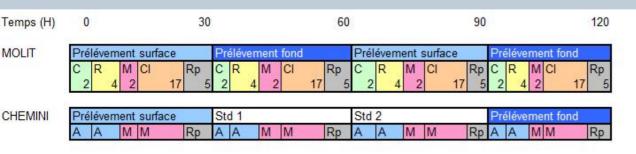
Protection box

Reagent bags

Multiconnectors

Vibration tests

Verify the robustness of the instrumentation


- Characteristics
- Deployment on the Molit Buoy
- Monitoring of the Bay of Vilaine

- ISUS integrated into a Provor profiling float
 - Mechanical and electronical integration
 - Deployment in the Bay of Brest /
 - Monitoring in the Mediterranean Sea

Conclusions

Sampling and analysis simultaneously to the other parameters (S, T°C, Dissolved O₂, Turbidity)

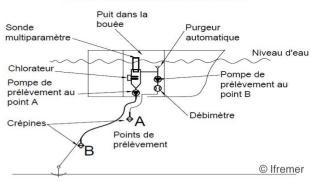
Marel technology

C R

M

CI

Rp


Chasse

Rincage

Chloration

Repos Attente

Prélévement et Mesure

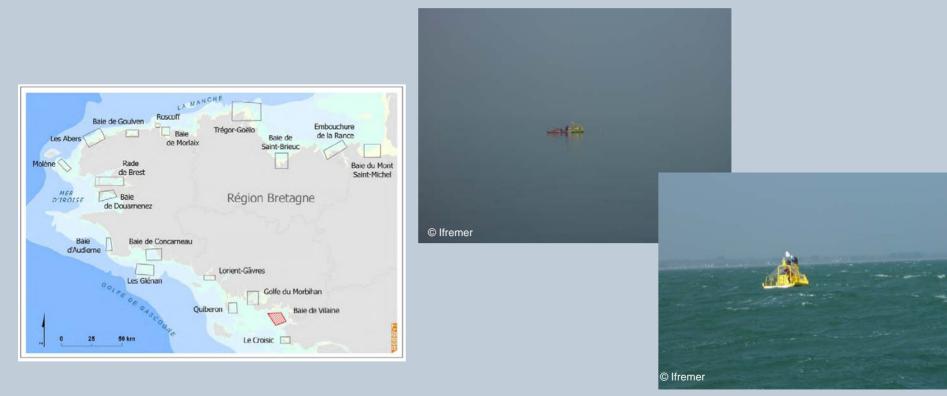
SCHEMA CIRCUIT HYDRAULIQUE MOLIT

4 surface and bottom measurements per day nitrate and silicate

RECODD

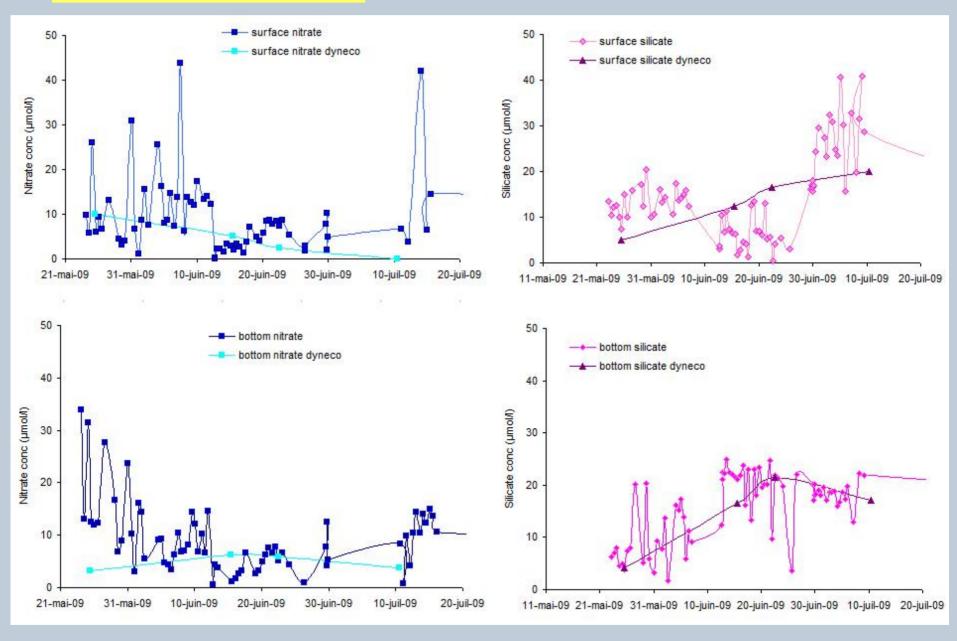
PRogramme de recherche ECOtechnologies et Développement Durable

lfreme



- Characteristics
- Deployment on the Molit Buoy
- Monitoring of the Bay of Vilaine

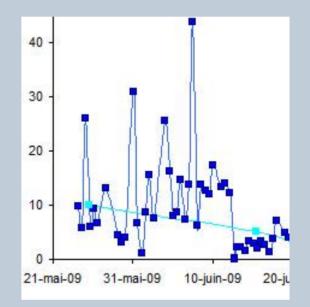
- ISUS integrated into a Provor profiling float
 - Mechanical and electronical integration
 - Deployment in the Bay of Brest /
 - Monitoring in the Mediterranean Sea


Conclusions

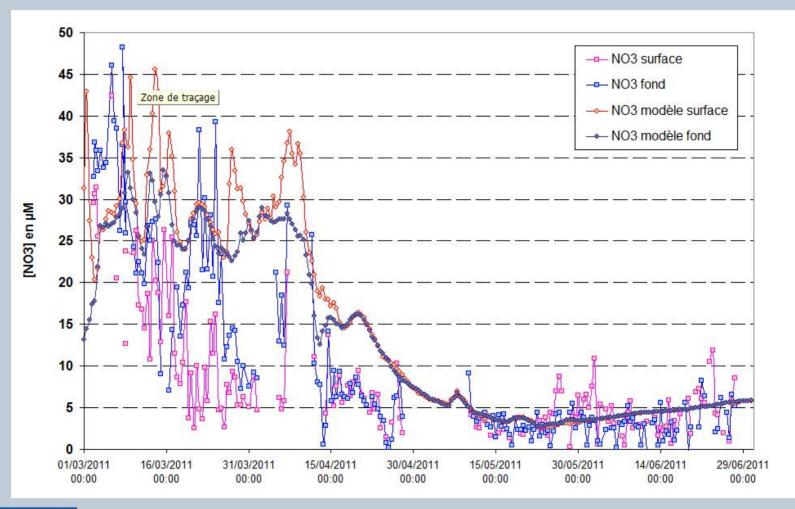
Vilaine Bay

- To understand and to simulate the apparition of Pseudo-nitzschia in the Vilaine Bay
- To contribute to the Marine Strategy Framework directive and compared it to high frequency measurements

2009: 7 months of deployment

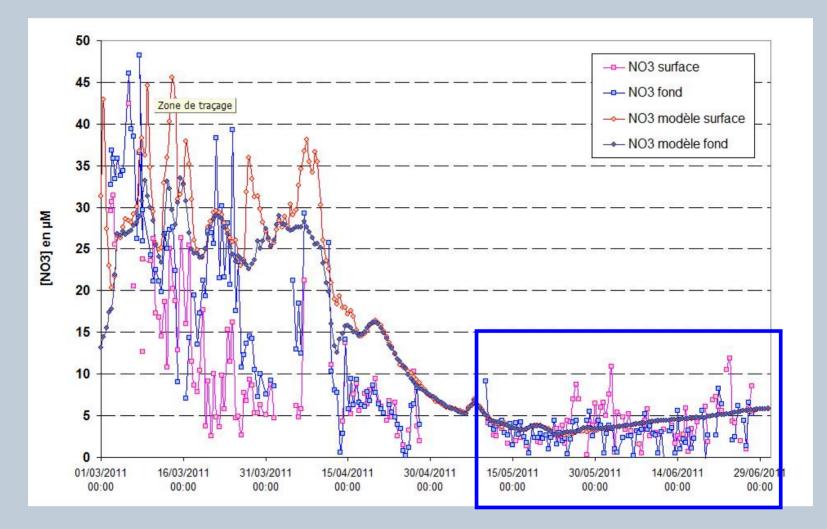

• Comparison with discrete samples :

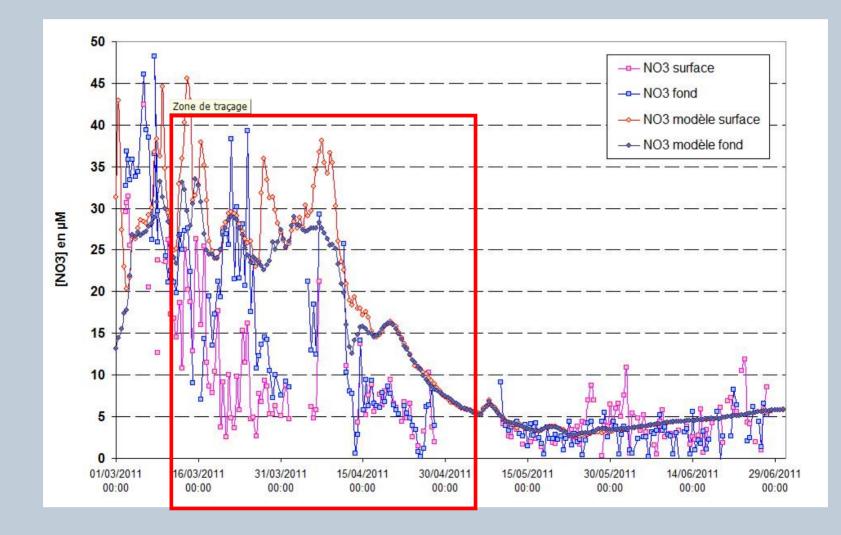
prefiltration, time gap between both analysis (2h), sampling at the same depth?


• Comparison with traditional strategy :

underestimation for nitrate : difference of 2,96 μ mol/l for surface nitrate concentrations, and 1,73 μ mol/l for bottom nitrate concentrations

missing extreme concentrations


2011 : 4 months of deployment



Input in biogeochemical model

- SeaTechweek FCT - Brest 10th October 2012

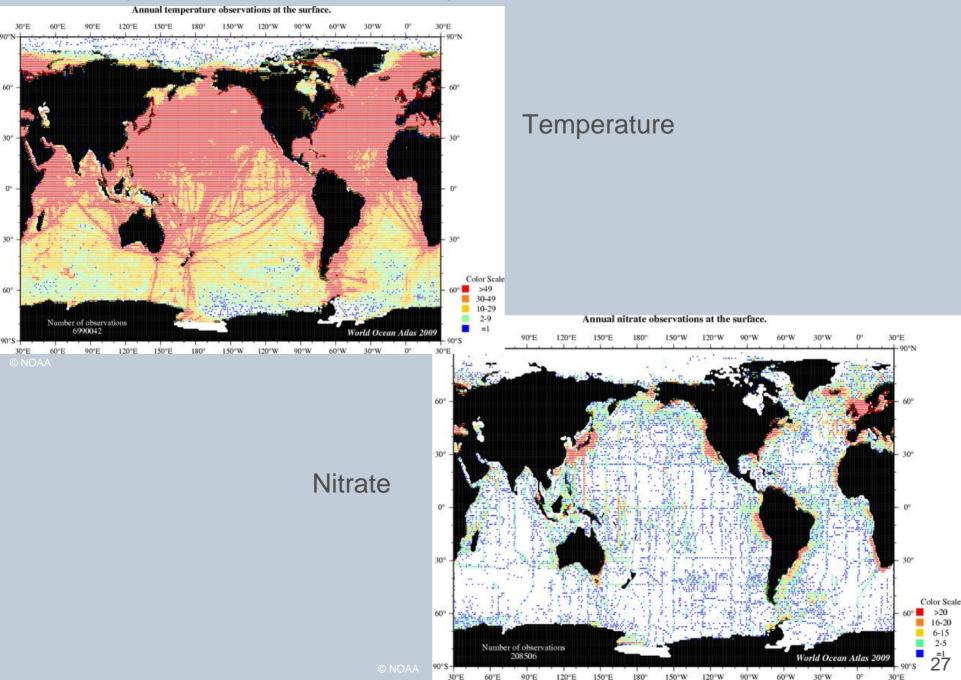
• Beginning of May, mid June to July : good estimation

Mid March to end of May :
 much more difficult to simulate

CHEMINI

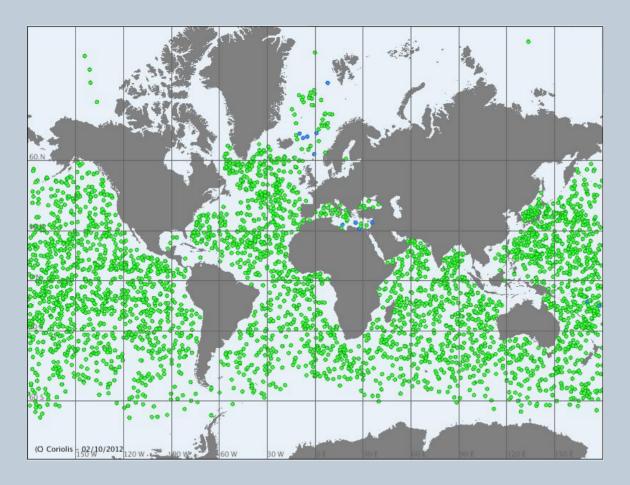
Cheminis gave data analytically pertinent

better characterization of the nutrient distribution as a function of time


but still not enough data to simulate correctly this marine ecosystem

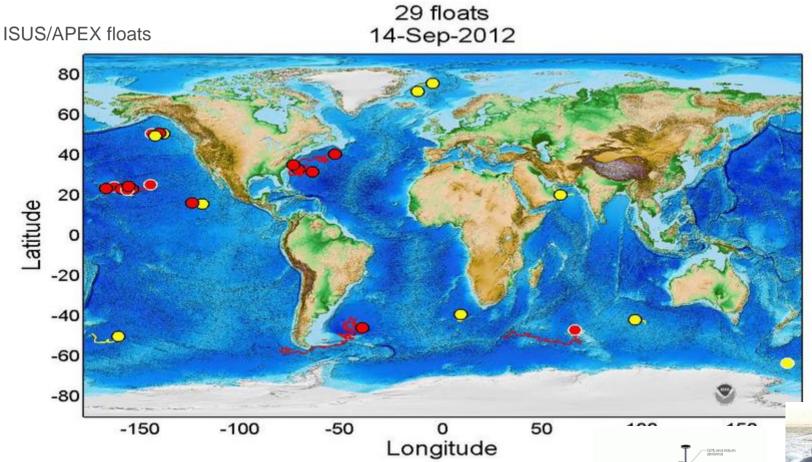
Need of more deployments

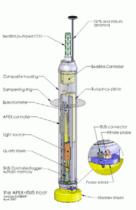
Relevant temporal frequency for nitrate and silicate concentrations ?


Nutrients, what about spatial coverage ?

Spatial observation of temperature versus nitrate concentrations

In situ determination of salinity and temperature in open ocean


About 3000 floats operating at sea, profiling from surface to 2000m every 10 days, measuring temperature and salinity


http://www.argo.ucsd.edu, http://argo.jcommops.org

In situ determination of nitrate in open ocean?

Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pp, March 2009

What about phosphate, silicate, ammonia?

Hans Jannasch © 2007 MBARI

• CHEMINI

- Characteristics
- Deployment on the Molit Buoy
- Monitoring of the Bay of Vilaine

• ISUS integrated into a Provor profiling float

- Mechanical and electronical integration
- Deployment in the Bay of Brest
- Monitoring in the Mediterranean Sea

Conclusions

ISUS integrated into a Provor profiling float

ISUS Satlantic

In situ ultraviolet spectrometer for nitrate concentrations measurement

Provor CTS3 float

- Postdoctoral research of Damien Malardé, ENSTA-Bretagne, LOV
- PRONUTS project (Group Mission Mercator Coriolis (GMMC) and by the PACA region)

- Identify the optical constraints
- Dimension the various electronic and optical elements
- Modify of the optical probe
- Adapt the hardware of the two systems
- Integrate the optical probe inside the CTD device to avoid biofouling

• CHEMINI

- Characteristics
- Deployment on the Molit Buoy
- Monitoring of the Bay of Vilaine

• ISUS integrated into a Provor profiling float

- Mechanical and electronical integration
- Deployment in the Bay of Brest
- Monitoring in the Mediterranean Sea

Conclusions

- Calibration performed using Aquil and « Provor » ISUS
- Variation of the ISUS response as a function of temperature, salinity, turbidity
- Integration of the optical probe inside the CTD device to avoid biofouling
 No influence of tributyltin on the measurement of nitrate concentration

Technical assays in the Bay of Brest, May 2011

The SOMLIT network (Blain et al. 2004) gave similar values for temperature and salinity.

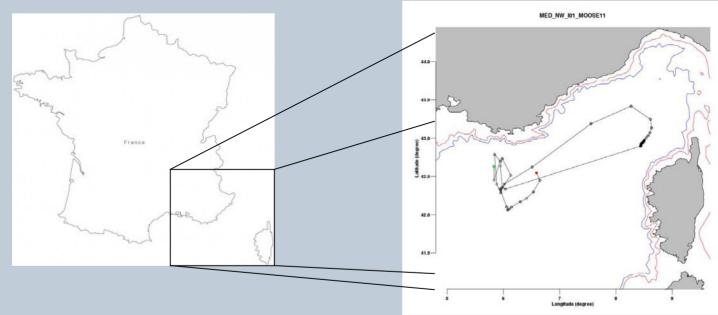
nitrate concentrations obtained using the ISUS stronger (4.96 μ mol/l) than those obtained by the SOMLIT network (1.02 μ mol/l 2m depth).

influence of the Aulne River at the origin of the enhancement, observed at the east of Roscanvel compared to the SOMLIT

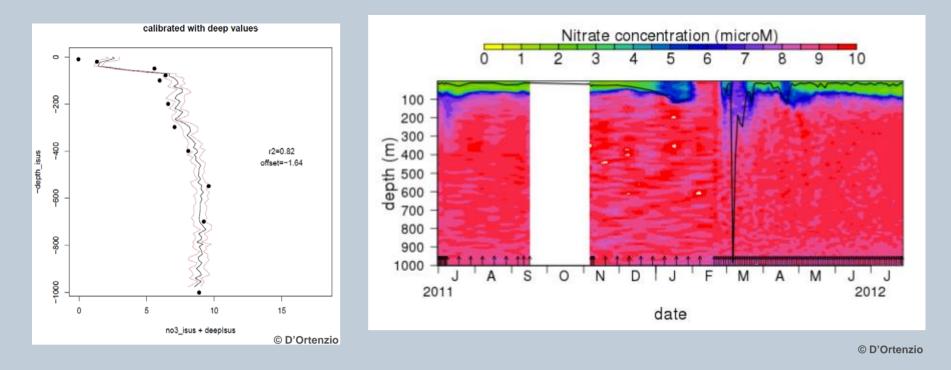
Malardé *et al.* (submitted Journal of atmospheric and Oceanic Technology) – SeaTechweek FCT – Brest 10th October 2012

• CHEMINI

- Characteristics
- Deployment on the Molit Buoy
- Monitoring of the Bay of Vilaine


• ISUS integrated into a Provor profiling float

- Mechanical and electronical integration
- Deployment in the Bay of Brest
- Monitoring in the Mediterranean Sea


Conclusions

- MOOSE program (Mediterranean Ocean Observing System on Environment)
- Pronuts ISUS deployed from 15 June 2011 27 July 2012
- seven measurements were acquired from 0 to 1000m depth
- 162 profiles of the Pronuts ISUS were collected

- surface values during the oligotrophic period are close to zero
- complete homogenization of the NO₃ concentrations probably due to mixed layer deepening

Courtesy Fabrizio d' Ortenzio

(http://www.obs-vlfr.fr/OAO/provbio/Lavigne/PRONUTS.htm)

- SeaTechweek FCT - Brest 10th October 2012

ISUS integrated into a Provor profiling float

Provor good vector for optical sensors

drift in the ISUS response ($\sim 2 \mu mol/l$)

but significant increase in the spatial distribution of nitrate concentrations in 3D

Recovery of the Pronuts ISUS

Biofouling ?

• CHEMINI

- Characteristics
- Deployment on the Molit Buoy
- Monitoring of the Bay of Vilaine

- ISUS integrated into a Provor profiling float
 - Mechanical and electronical integration
 - Deployment in the Bay of Brest
 - Monitoring in the Mediterranean Sea

Conclusions

Conclusions

• Wet chemistry on a buoy : temporal case study

Good analytical performances In situ calibration No biofouling Ideal for coastal monitoring (MSFD) Maintenance every month Frequency of analysis 13 mins

• Optical Sensor on a profiler : spatial and temporal case study

Provor good vector for optical sensors High frequency of measurement significant increase in the spatial distribution of nitrate in 3D Ideal for open ocean monitoring Drift in the ISUS response (~ 2 µmol/l) Poorer accuracy No *in situ* calibration Biofouling ...

And which one is the cheapest ???

Need to consider each method as complementary

High temporal and spatial frequency and *in situ* instrument can better characterise the nutrient evolution

- data to store, validate
- valorisation
- human implication

MERCI !!

Karenn Bucas Virginie Antoine Florian Caradec Michel Repecaud Loic Quemener David Le Piver Laurent Gautier Stéphane Barbot Patrick Rousseaux Michael Retho Jean - Pierre Allenou Raoul Gabellec ...

Damien Malardé Vincent Dutreuil Serge Le Reste Fabrizio D'Ortenzio Antoine Poteau Dominique Le Roux

All the persons involved in the development and deployment of the cheminis since the last 8 years,

the Pronuts team, ANR PRECODD (Trophimatique), Previmer, GMMC, PACA region, LOV, Europole Mer and Ifremer