

GRANT N°: 871153 **PROJECT ACRONYME :** JERICO-S3 **PROJECT NAME :** Joint European Research Infrastructure for Coastal Observatories -Science, services, sustainability **COORDINATOR :** Laurent DELAUNEY - Ifremer, France - jerico-s3@ifremer.fr

JERICO-S3 MILESTONE

Joint European Research Infrastructure network for Coastal Observatory	/
Science, Services, Sustainability	

MS#, WP# and full title	MS#36, WP#7, <i>Review of emerging technologies</i>
5 Key words	
Lead beneficiary	NORCE
Lead Author	Catherine Boccadoro,
Co-authors	Preethi Surendran (NORCE), Dominique Durand (COV)
Contributors	Felipe Artigas (CNRS), Laurent Coppola (CNRS), Andrew King (NIVA), Veronique Creach (CEFAS), Naiara Rodríguez-Ezpeleta (AZTI), Ian Salter (FAMRI)
Submission date	M12

 \rightarrow <u>Please specify the type of milestone</u>:

- Report after a workshop or a meeting (TEMPLATE A)
- □ Report after a specific action (TEMPLATE B) (test, diagnostic, implementation,...)
- ✓ Document (TEMPLATE B) (guidelines,...)
- □ Other (TEMPLATE B) (to specify)

Diffusion list		
<u>Consortium</u> <u>beneficiaries</u>		

PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE **JERICO-S3** CONSORTIUM. NEITHER THIS DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE **JERICO-S3** COORDINATOR.

According to the Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) and the 78-17 modified law of 6 January 1978, you have a right of access, rectification, erasure

of your personal data and a right of restriction to the data processing. You can exercise your rights before the Ifremer data protection officer by mail at the following address: IFREMER – Délégué à la protection des données- Centre Bretagne – ZI de la Pointe du Diable – CS 10070 – 29280 Plouzané - FRANCE or by email: dpo@ifremer.fr // jerico@ifremer.fr

If remer shall not hold your personal data for longer than necessary with regard to the purpose of the data processing and shall destroy it thereafter.

TABLE OF CONTENT

1. Objectives and implementation process	3
2. Main report	3
2.1. Introduction	3
2.2. Methodology	3
3. Conclusion and next steps	4
4. Appendix and references	5
4.1. Appendix A: Sensor candidates for the integrated sensor packages	5
4.2 Appendix B: List of selected sensors developed from OOT projects	11
4.3 Appendix C: Sensors for a phytoplankton/plankton package to be integra C-EGIM	ated into 12

1. Objectives and implementation process

The main objective is to identify the state-of-the-art and novel sensor candidates that can measure the targeted EOV packages for environmental monitoring. This work will be the basis for the selection of sensors for the design of packages. This report focusses on environmental pollutants – metals, hydrocarbons, microplastics, underwater bioacoustics, as well as biological contaminants such as phytoplankton abundance (EOVs listed by Global Ocean Observing System (GOOS)). The list is preliminarily analysed and consolidated based on the maturity of the sensors (reaching TRL 6), available for deployment and rapid responses, field use and with suitable detection limit.

2. Main report

2.1. Introduction

Ocean biogeochemistry, biology and ecosystems need to be monitored in the ocean as well as in the coastal boundaries at appropriate spatial and temporal scales. Monitoring methods used to rely on manual sampling followed by analysis in the laboratory using standard analytical techniques to online in-situ sensors. This laborious process includes sample collection and storage, transport and appropriate analysis following the SOP provided that increases the cost drastically and limits sampling in regions of limited access. *In situ* sensors are developing rapidly to monitor many different parameters in the environment in a cost-effective, sustainable way, providing extensive quality data. However, the maturity of these sensors is variable, and many are based on imaging technologies and generate enormous amount of data which lacks automated processing. However, algorithms are constantly being developed for instrument automation to identify biological pollutant, (for example Flow Cytobot from JERICO-NEXT). Several reviews are available for different pollutants monitored in the marine environment ¹⁻³. Here, we consolidate a list of existing and novel sensors available for environmental water monitoring for pollutants such as metals, microplastics, phytoplankton diversity/harmful algal toxins and microbial diversity.

2.2. <u>Methodology</u>

Scientific literature reviewing of the state-of-the-art sensors and biosensors in marine monitoring, as well as personal communication with recent research projects/researchers on existing sensors and novel sensors have been the basis for compiling a list of sensors which have reached a TRL of 6 and are ready for *in situ* implementation and integration into packages.

Date	What	Who	Outcomes
Oct. 6, 2020	Udate and requirements on sensors	WP1, WP7	First version of the review table
Feb 2, 2021	Biological sensors	WP7, WP5 (ST7)	update Biological sensors (plankton)
Feb 5, 2021	Autosamplers and filtering devices	WP7, WP5 (ST5, ST6, ST7)	backbone for the WASP

Series of dedicated meetings with sensor experts and WP5 Technical steering teams (ST5 BGC; ST6 (genomics); ST7-biology):

Feb 10, 2021	Biology (best practices	WP7, WP7 (ST7)	update biological sensor list for sensor package
Feb 15, 2021	Review from strategy	WP1, WP7	endorsement link to IRS/PSS
Feb 18, 2021	Biogeochemistry	WP7, WP5 (ST5)	Update BGC sensors
Feb 24, 2021	BGC	WP7, WP1 (CNRS)	Consolidation

An exhaustive list of existing sensors and novel sensors are provided as a table in Appendix 1, that gives information on the type of sensor developed, analytical methods involved, data collected, commercial availability and price. For further analysis and consolidation, H2020 FP7 –OCEAN–2013, Ocean of Tomorrow (OOT) projects were thoroughly reviewed. The OOT2013 was the last cross-thematic call of its kind under FP7, focussing on marine sensing technologies (including biosensors) to monitor the marine environment. Nine out of the 12 projects funded under this topic developed biosensors for marine environmental monitoring, analyte/pollutant detected, biosensor type, sensing material and the recognition type. Personal communication with the project leaders is ongoing to collect information on their maturity, TRL level, etc. Selected novel sensors which could provide complementary data are presented in Appendix 2.

Current strategies for marine monitoring of contaminants include sensors that produce a response due to change in the physical, chemical, or biological conditions, and collect sometimes large amounts of data. These sensors are designed in combination with analytical techniques to achieve sensitivity, selectivity, limit of detection, repeatability and reproducibility⁴. Biosensors that convert biological responses to electrical signals, immunosensors, aptasensors, genosensors and enzymatic biosensors are different types of recognition elements in a biosensor; based on the transduction principle they are classified optical (optical fibre, surface plasmon resonance (SPR)), electrochemical into (amperometer, impedence); and piezoelectric (quartz crystal microbalance biosensors). Such biosensors are the most used tools due to their rapid responses, portability, easy fabrication, and field deployability. For example, SPR is used for detecting toxins such as Saxitoxin, okadaic acid and domoic acid with a detection range from 0.36 ng/ml to 50 ng/ml ⁵.2nd generation ESP – in situ detection of marine organisms using sandwich hybridization, competitive ELISA, and gPCR assays. These were installed on ships, shore-based stations, moorings, and drifters. 3rd generation ESP – made to fit Tethys-class long range AUV that can collect and process 60 samples while roaming freely in the ocean from the surface to a depth of 300m in a single deployment for over many days. Appendix 1 gives an overview of existing and novel sensors of interest to JericoS3, deployed or having reached a technology readiness level of 6, including type of sensor developed, analytical methods involved, data collected, commercial availability and price. Further, H2020 FP7 -OCEAN-2013, Ocean of Tomorrow (OOT) projects were reviewed (Appendix B). The OOT2013 was the last cross-thematic call of its kind under FP7, focussing on marine sensing technologies (including biosensors) to monitor the marine environment.

3. Conclusion and next steps

The new technologies need to be designed in such way to easily integrate into the existing and available coastal and ocean observation programs in a sustainable and cost-effective

way. Use of autonomous vehicles and integration of biosensors to monitor contaminants and toxins such as phytoplankton biomass are developing.

Development of automation technology is progressing rapidly that enables us to widen the scale and scope of environmental monitoring by giving data-rich, cost-effective, sustainable outputs. Recent advances in *in situ* devices are designed to collect eDNA sample to identify species and population in water ^{6, 7}, nanopore sequencing to identify microbes and planktons are built. Currently, focus of eDNA studies are on the analytical methods and bioinformatics pipeline. Automation will give us the advantage to collect samples in remote inaccessible regions by humans for monitoring. Environmental sample Processor (ESP), a robotic device is programmed for sample collection and preservation for further analysis in the lab.

The growing demand in marine environmental monitoring focus on the development of autonomous, in situ and advanced methods for sample preservation technologies. New technologies such as optofluidic, molecular sensors, ESP are most promising for miniaturization, automation and towards *in situ* monitoring.

Analysis of environmental DNA (eDNA) will be the future approach for reducing costs and impacts of traditional monitoring approaches.

- Autonomous sampler that collects water samples, filter the sample, and preserves the sample for further analysis – WASP to be integrated in the JIIM platform – OOT BRAVOO and COMMONSENSE
- Benthic and pelagic biosensors
- 4. Appendix and references

4.1. <u>Appendix A: Sensor candidates for the integrated sensor packages</u>

Benthic and pelagic sensors packages:

- Water chemistry (environmental parameters)
- Contaminants (microplastics, PCBs, toxins, PAH, hydrocarbons, general toxicity, DOC, DON
- Underwater noise
- Plankton diversity and toxic algae blooms
- Microbial diversity

High throughput data: Environmental parameters, Flow cytometry

Triggered when needed based on above data: imagery, underwater noise, biology, contaminants

Water sampler			
1. SYREAUCO (IFREMER, Romaric)	Sampler 15 x 500ml turbidity or fluorescence SPM, POC, OM content, Chla	In development. Sampler functional TRL7 in early 2020. Commercially available in late 2020.	
OOT Mariabox and ENVIGUARD	Sampling, Filtering, washing of interest to Jerico	Check this is usuable/adaptable to jerico platforms for DNA/RNA extractions	

Good for all samples requiring laboratory analysis, and also as a basis for plugging in a filtering unit containing preservation liquid. With some development, this technology could enable all DNA/RNA based analysis.

In situ imaging /flow cytometry			
2. Video plankton recorder (HZG, Felipe)	Underwater images of zoo and phytoplankton, with size distribution. Plankton and particles 35µm-mm.	Commercially available Data sent via fibre optic cable or internally stored.	
18. Underwater Vision Profiler 6 (coppola)	The Underwater Vision Profiler or UVP (CNRS patent) is designed to study large (>100 µm) particles and zooplankton simultaneously and to quantify them in a known volume of water. Marine particles > 100µm Particles and plankton possible identification > 500µm Depth 6000m	Commercially available TRL9 15Keuros	
15. Video Plankton Recorder VPR (Felipe)	video-microscope system used for imaging plankton and other particulate matter in the size range from a few micrometers to several centimeters. The VPR is essentially an underwater microscope. High frequency images from plankton and other marine particles (100µm-1cm). Max depth 350m	Exists a new generation with realtime data transfer TRL9 Commercially available 80K euros	
3. Underwater Vision profiler 5	Imaging of Large (>100µm) particles and zooplankton (>500µm) and quantification in known volume of water. Functional down to 6000m depth.	TRL9 commercially available 100K euros	
4. Flowcam	Imaging particles sizes 2-1000µm, phytoplankton, microzooplankton abundance and diversity (harmful aglae). Can be triggered based on fluorescence, or programmed.	TRL9 commercially available. Not on platform yet. +	
5. Stand alone Imaging device	Automated programmable image acquisition and processing. Macro and mega fauna diversity and spatial temporal dynamics.	TRL6 – prototype commercially available. Used in several fixed platforms and on board ARGO float.	

	Floating, epi-benthic and benthic macro and mega fauna whose size is larger than 1cm	6,5K Euros including softward and hardware
6. Imaging flow cytoBot (NIVA, SYKE, felipe)	Images of phytoplankton and microzooplankton (5-150µm) triggered by autofluorescence. Cell abundance, diversity and biomass. Trained to recognise phytoplankton. QC needed	Used with ferrybox TRL? 150 Keuros for instrument only
7. ZooScan (CNRS, IFREMER, Felipe)	Digital images zooplankton (>50µm) classified by size or taxa.	TRL9, lab system 20Keuros
10. Cytosense (CNRS-MIO, CNRS-LOG, CNRS-BOREA, VLIZ, CEFAS, RWS) Felipe	Automated pulse shape and images recording flow cytometer. Phytoplankton at single cell level. Fluorescence emitted by pigments Resolves phytoplankton functional groups and average sizes. 1-800µm and up to 4mm for chains	EOL buoy autonomous test TRL9 commercially available 120-150keuros
8. 13. CytoPro (CNRS, Felipe, gregori)	Automated flow cytometer coupled to a staining module. Extends capabilities of Cytosense Heterotrophes (prokaryotes, nanoflagellates, ciliates, microzooplankton) cell abundance 0.4-500µm and viability/activity >15-20µm Autofluorescence recorded Sata and images analysed	Integrated on fixed platform 100-150K euros
Fluorometer	r	
9. FastOcean sensor (CNRS, VLIZ, RWS, NIOZ, Felipe)	Measures phytoplankton photosynthetic activity and primary production - Act2 Run semi-automatic system - APD profiler system for the water column 600m depth	Commercially available 34Keuros 94Keuros
11. FluoroProbe and AlgaeOnlineAnalyser (AOA)	Highly sensitive submersible spectrofluorometer.	Commercially available TRL9

(FRRF – AOA : CNRS-LOG, CNRS-BOREA, IFREMER, VLIZ – MultiExciter : SYKE) Felipe	Measures total phytoplankton chlorophyll a concentration and to discriminate four spectral algal groups. Fluorescence intensity after excitation at 470, 525, 570, 590, 610 and 370 nm (relative unit) - Total chlorophyll a concentration (µg chl a. L ⁻¹) - Brown algae concentration (in eq. µg chl a. L ⁻¹) - Cyanobacteria concentration (in eq. µg chl a. L ⁻¹) - Green algae concentration (in eq. µg chl a. L ⁻¹) - Cryptophytes concentration (in eq. µg chl a. L ⁻¹) - CDOM concentration (arbitrary unit) - Water temperature (°C) - Transmission (%)	Data on cyanobacteria and 3 other microalgae in real time 28-40Keuros
13. NEXOS O1 (TriOS - PLOCAN Eric Delory)	Matrixflu Matrix fluorometer – NeXOS O1 – Visual or UV spectrum. CDOM PAH BTX TRP	Integrated onto several platforms 13Keuros
16. HyAbS - Hyperspectral Absorption Sensor (HZG)	a custom-made sensor and basically a modified and advanced version of the manual or semi-automated PSICAM. Absorption coefficient spectra, CDOM, Phytoplankton biomass (chlorophyll-a), SPM, algal groups	Used connected to ferrybox TRL6, custom made 50Keuros
Acoustic sensors		
12. NEXOS A1 (Eric Delory)	Passive acoustic digital sensor	Integrated on several platforms
	with smart interfacing and embedded processing. Measures underwater noise.	(waveglider, deep glider, surface buoy) Acoustic data 8Keuros
Benthic sensors (A Gremare)		

19. Sediment microelectrode profiler: Diffusive oxygen fluxes Benthic Chambers : Total oxygen fluxes at the sediment water interface Eddy correlation system: Total oxygen fluxes at the sediment-water interface Optical sensor + dedicated image analysis software of time series of images (AVIExpolore)	Vertical profiles of oxygen concentrations within the sediment column Decrease in oxygen concentrations within the sediment column Time series of oxygen concentration and turbulence in the water column Time series on the abundance and activity of benthic macrofauna	Sediment microelectrode profiler commercially available. Benthic chambers not commercially available
pH, nitrates, absorption, pollutant	S	
17. CONTROS HydroFIA pH (Kongsberg) (HZG)	Analyzer for pH value (pH7-9) in Seawater	Commercially available 50keuros Data sent in realtime
22. Valeport SUV51 nitrate sensor (J.Allen, E. Alou, SOCIB)	Nitrate sensor Absorption of UV radiation at 5 ultra UV wavelengths + 1 internal reference channel. Mapping of nitrate variability	TRL7 but no further development planned 20kNOK, not commercially available
23. Valeport SUV101 nitrate sensor (J.Allen, E. Alou, SOCIB)	Nitrate sensor Absorption of UV radiation at ultra UV wavelengths. 0,1µM Nitrate detection limit Mapping of nitrate variability	TRL2 but better than SUV51 20kNOK, not commercially available. Designed for multiplatforms
20. Microplastics: Autonomous microplastics sampler (Andrew King, NIVA)	Quantity (mass) and quality (microscopy/FTIR/NIR) of three microplastics size fractions. Mass, volume, size spectrum, plastic type	TRL? Under development
21. Autonomous, multiple sample particle filtration, preservation, storage system (Andrew King, NVA)	Filtration for lab analysis of POC/N/P, chl a, algal pigments, cDOM, DNA/RNA, particulate metals, etc.	TRL? Under development
OOT BRAAVOO – Microbial bioreporters (Jan Van der Meer, UNIL)	In situ autonomous Biosensors for contaminants based on bioluminescence Measures petroleum compounds and general toxicity	Limited autonomy. Functional in laboratory.
OOT SENSEOCEAN – Biogeochemical sensors (Matt Mowlem, NOC)	Optode sensors: O2, pH, CO2 Fluorescence sensor: BTEX, PAH, Tryptophan, Algae Nitrate and nitrite, pH, phosphate, iron, silicate, ammonium, DIC, Organic N and P Lab on chip, Silicate sensor.	Already an integrated sensor package Has been deloyed on many platforms

OOT SMS (Luca Sanfilippo, SYSTEA	Automated immune assay with magnetic beads to capture chemicals Detection of algal toxins (okadaic acid, domoic acid, saxitoxin) Detection of pharmaceuticals (sulphonamides) Detection of nutrients: ammonia, nitrate, orthophosphate	Tested on floating platform and buoy
OOT SCHeMA (A. Novellino, ETT)	Integrated in situ Chemical mapping. Parameters measured: chemicals Metals Pesticides Pharmaceuticals Pathogens Nutrients Pollutants CO2	Complete with data collection system
OOT ENVIGUARD (Dennis Growland)	Biosensor technology for monitoring harmful aglae, toxins and PCB Chemical contaminants Biotoxins PCBs	
OOT MariaBox (Matteo Bonasso)	Parameters (8 parameters): Pollutants (PAH, fluorinated surfactants, heavy metals, pesticides) Algal toxins (saxitoxin, microcystin, azaspiracid, domoic acid) Environmental parameters (temp, pH, salinity, DO) Aditional custumisable module	Filtration unit of interest to Jerico?
OOT Common Sense (Sergio Martinez, LEITAT)	Environmental parameters: Temperature, Conductivity, salinity, pressure, pH, DO Turbidity Chorophyll a, Cyanobacteria Nutrients (LOD, phosphate, nitrite, nitrate) heavy metals (Cd Hg, Pb) Microplastics Underwater noise	Interest for jerico: Heavy metals, microplastics
DNA/RNA based 'sensors': Metho	ds requiring automated sampling a	nd sample preservations
14. Microbial species and genes	DNA/RNA qPCR based sensor.	Has been fully integrated/automated in ESP

	Quantifies species or genes in seawater: Algae bloom Pathogens Eutrophication Oil pollution	platform. Used with ferrybox in jericoNext. Expensive and not mature to integrate onto Jerico platforms as fully in-situ.
Metabarcoding	Biodiversity based on sequencing	
eDNA	Biodiversity based on sequencing of environmental DNA	
DNA probe/sandwich hybridisation	Several candidates including NORCE, OOT SMS Detection of toxic algae species	

<u>4.2 Appendix B: List of selected sensors developed from</u> <u>OOT projects</u>

Project	Biosensor type/Electrode, Sensing material	Recognition type	Analyte/pollutant detected
BRAAVOO	Fluorescent bioreporter bacteria, immunosensors, algal -microfluidic	Lab-on-a-chip Enzymes, antibodies	General toxocity, stress response, Algal toxins, heavy metals, organic compounds related to oil and antibiotics (ref – final summary of BRAAVOO project)
EnviGuard	Molecular probes, algal, chemical. Bacterial and viral -microfluidic -electrochemically, optical label-free responses	Nucleic acid Aptamers Antibodies	Microorganisms and toxins from biological sources – Betanodavirus, E.coli, okadaic acid and saxitoxin, PCB 128, PCB 118
MariaBox	Novel		Pollutants (PAH, heavy metals, pesticides) Algal toxins (saxitoxin, microcystin, azaspiracid, domoic acid)
SEA-ON-A-CHIP	Immunosensors Immuno-assays -microfluidic system, microelectronics	Antibodies?	8 selected contaminants Irgarol sulfonamides

SMS	DNA probes, sandwich hybridisation, colorimetric Immuno based assays	Algal toxins immunosensors	Okadaic acid, domoic acid, saxitoxin, toxic algal species – Dynophisis, P Nitschia, A. minutum
COMMON SENSE			eutrophication – Chlorophyll A, Cyanobacteria, heavy metals, microplastics, underwater noise
NEXOS	Fluorescence, absorption, carbon sensing	Optical, passive optical sensors	pH, inorganic carbon, carbonic acid, antifouling
SCHeMA	Metal probe, solid state electrodes electrochemical probes Optical sensor Optochemical probes		Metals, pesticides, pharmaceuticals, pathogens, nutrients, pollutants, CO_2
SenseOCEAN	Electrochemical microsensors Fluorescence sensor Silicate sensor, chemical sensor	Optical, chemical	Nutrients, phytoplankton, chlorophyll, detritus

4.3 Appendix C: Sensors for a phytoplankton/plankton package to be integrated into C-EGIM

C-EGIM ports	parameters	sensors	Manufacturer	sensor name
		chorination of all		
	biofouling	optical sensors		
Standard+ physic	S	•	-	•
	conductivity/sali			
1	nity, temp, depth	CTD	Seabird, Aanderaa	
	current speed and			
3	direction	ADCP		
2	dissolved O2	optical sensor		
			SeaBird, Trios,	
4	Chl a	fluorescence	Aanderaa, +++	
			SeaBird, Trios,	
5	turbidity	optical sensor	Aanderaa, +++	
BGC				
6	N, C, O	optical sensor UV	TRIOS, DE	opus

	biogeochemistry			
	(nitrate, nitrite,			
	BOD, COD,			
	DOC/TOC, TSS			
				MBARI-isus,
	Nitrate		Seabird, US	Seabird-SUNA
	Nitrate		Valeport, UK	SUV51, SUV101
7	pCO2		CONTROS	HydroC
	pCO2		Franatech	
0	ъЦ	Ontodo	OOT	mH (02 (02)
8	рн	Optode	SENSEUCEAN	рн, (02, со2)
		ICEET	Sophird	SEAFET V2 Ocean
		13661	Seabiru	рп nЧ concor
				200 SM (max 2
			SensorI ah	har)
Biology				[⁵⁴¹]
Diology	nigments (Chloro			
	Fuco			
	PhycoCyanin			
	PycoErythrin)	spectrofluoromet		
9	and CDOM	er	bbe Moldaenke	FluoroProbe.
	pigments (Chloro,			
	Fuco,			
	PhycoCyanin,			
	PycoErythrin)	spectrofluoromet	Chelsea	
	and CDOM	er	Technology	VLUX AlgaePro
	PhytoPP -			
	primary			
10	production (and	FRRF Fast		
	Phytoplankton	repetition rate	Chelsea	
	pigments)	fluorometry	Technologies	FastOcean APD
		automated pulse		
	Phyto cell size	shape and images		
11	(micro, nano,	flow cytometer,		
	picoplankton)	fluorescence		
		emitted	CytoBuoy	CytoSub
40	zooplankton and	undom		self triggered
12	large particles	underwater		particle sensor -
	particlas	vision promer		UVP
	particles,	ninaging now ior		Flow Cutobat
12 bis	microplankton	and		Diatom
	(-200u)	microplankton	McLane	dinoflagellate
	L 200HJ			Lamonagenate

				PPS	
				(phytoplankton,	
				trace metals,	
		phytoplankton		particles	
		sampler	McLane	(plastics)	
		video microscope		VPR Video	
		(if high		particles/plankto	
		concentration)		n recorder	
Integrated sensor	Integrated sensors				
	CTD,ODO, pH,				
	Turbidity, Chl-a		SeaBird	HydroCat	
	CTD, DO, pH		SeaBird	SeapHOx	
				Seaguard (CTD,	
				DO, Chl-a, pCO2,	
			Aanderaa	pH)	

Reference List

 Justino, C. I. L.; Duarte, A. C.; Rocha-Santos, T. A. P., Recent Progress in Biosensors for Environmental Monitoring: A Review. *Sensors (Basel)* **2017**, *17*, (12).
Mills, G.; Fones, G., A review of in situ methods and sensors for monitoring the marine environment. *Sensor Review* **2012**, *32*, (1), 17-28.

 Wang, F.; Zhu, J.; Chen, L.; Zuo, Y.; Hu, X.; Yang, Y., Autonomous and In Situ Ocean Environmental Monitoring on Optofluidic Platform. *Micromachines (Basel)* **2020**, *11*, (1), 69.
Justino, C. I. L.; Freitas, A. C.; Duarte, A. C.; Santos, T. A. P. R., Sensors and biosensors for monitoring marine contaminants. *Trends in Environmental Analytical*

Chemistry 2015, 6-7, 21-30.

5. McNamee, S. E.; Elliott, C. T.; Delahaut, P.; Campbell, K., Multiplex biotoxin surface plasmon resonance method for marine biotoxins in algal and seawater samples. *Environmental Science and Pollution Research* **2013**, *20*, (10), 6794-6807.

6. Chambert, T.; Pilliod, D. S.; Goldberg, C. S.; Doi, H.; Takahara, T., An analytical framework for estimating aquatic species density from environmental DNA. *Ecol Evol* **2018**, *8*, (6), 3468-3477.

7. Yamahara, K. M.; Preston, C. M.; Birch, J.; Walz, K.; Marin, R.; Jensen, S.; Pargett, D.; Roman, B.; Ussler, W.; Zhang, Y.; Ryan, J.; Hobson, B.; Kieft, B.; Raanan, B.; Goodwin, K. D.; Chavez, F. P.; Scholin, C., In situ Autonomous Acquisition and Preservation of Marine Environmental DNA Using an Autonomous Underwater Vehicle. *Frontiers in Marine Science* **2019**, *6*, (373).