hilululul

JOINT EUROPEAN RESEARCH INFRASTRUCTURE NETWORK FOR COASTAL OBSERVATORIES

JERICO WP3+4: BEST PRACTICE-FERRYBOX

Kai Sørensen, NIVA, kai.sorensen@niva.no

Speaker | Organism | adresse mail

www.jerico-fp7.eu

Date I City I Land

BACKGROUND

ha ha ha ha ha ha h

- 11 years of operation of the Norwegian Network
- 9 different ship installations over 11 year
- 5 different ship companies over the periode
- Norwegian Network operates from 54.5 to 79.5 North
- 2 Ferrybox systems in operation with the NIVA standard system
 - Temp, T-Inlet, Sal,O2, Chl-a_Fl, Turbidity, water sampler (24 *1 L)
- 1 Ferrybox with standard systems + experimental systems
 - CDOM, Phycocyanin, Enviro-Flu(PAH), pCO2, passive sampler air pressure and pH (soon)
- All 3 have TriOS Ramses radiance sensors for satellite validation
- 2 Minor Ferrybox systems with only Temp, Sal, Chl-a_Fl

CONTENT

holo holo holo h

- Installation of a new Ferrybox system (D3.1)
- Data transmission and communication
- *Maintenance of the systems*
- Calibration and QA-controls of the systems
- Calibration of Chl-a fluorescence

DELIVERABLE D3.1

Report on current status of Ferrybox D 3.1

Grant Agreement n° 262584 Project Acronym: JERICO

Project Title: Towards a Joint European Research Infrastructure network for Coastal Observatories

Coordination: P. Farcy, IFREMER,

jerico@ifremer.fr, www.jerico-fp7.eu:

<u>Authors</u>: David Hydes, Wilhelm Petersen, Kai Sorensen, Pierre Jaccard, Mark Hartman <u>Involved Institutions</u>: NOCS, HZG, NIVA <u>Version and Date</u>:1.6 06.08.2012

INSTALLATION

holo holo holo h

- Ship company/owners
 - Good relation with all involved technical inspector/director
 - Good information, benefit for the company
 - «Green profile»
 - Web display to passenger
 - Data can be helpful for the ship (temp, density, alkalinity)
 - You should consider if possible the «stability of the company»
- Ship type
 - Normally not many to choose since you want a certain area/transect
 - Ferries or cargo ships? Whats most stable concerning the operation
 - Cargo ship more rolling than ferries. (Optical measurements from deck)
 - Cargo more variations in water depth on intake and air in ship chest

Cath

INSTALLATION

holo holo holo l

- Route
 - Long routes give less access and service
 - Long port calls is not cost effective and can give more biofouling
 - Short port calls less possibility for service
- Regulations
 - Depends of the ship type and must be considered
 - Some area on the ship can have stronger regulation (IP-class, air gas under pressure e.g.)
- Place for installation/working space
 - Air temperture, air pollution/oil in the atmosphere
 - Space for specific experiments
 - Distance to the water inlet

INSTALLATION

holo holo holo d

Water inlet/outlet

- Water from ship chest or separate inlet (docking needed)
- Water from the internal water cooling (biofouling chemicals-problem?)
- Possibilities to clean the inlet and outlet
 - Use ball valves easy to clean
- Place for separate inlet temp and oksygen (before the debubbler)
- Regulation depending on ship and operation area
- Water supply lines regulations
- Pump(s)
 - Choose depend on the Ferrybox systems and what you are measuring
 - Biological samples (phytoplankton countings, flow cytometry) need maybe a slow moving peristaltic pump
 - Use pressure- and vakuum controller to stop pump if blocking

Catho

INSTALLATION

holo holo holo l

- Choice of the Ferrybox system
 - Commercial available Ferrybox systems and institute developed systems
 - Some arguments to consider:
 - Risk of leaks and flooding.
 - Open system water outlet (need to pump out).
 - Is the range of sensors and their accuracy what you need?
 - Can a third party system fit in the allocated place?
 - Can one split in smaller parts and remounted in the ship?
 - Can extra sensors be added in the future?
 - How "open" is the system hardware and software?
 - Data from the ship's system to be included (GPS, Wind, Gyro)?
 - Is it possible to modify settings and software using an external communications link to the ship from shore?

ION

DATA TRANSMISSION AND COMMUNICATION

Indealed in the first of the

- Internally on ship:
 - RS232 Port server between sensor and computer
 - IP communication from deck sensor to Ferrybox computer
 - Access to the ship GPS , Gyro, wind sensor.
 - Send data from the Ferrybox to the bridge (display)
 - (W)LAN (internal internet on deck)
- Externally to database at NIVA
 - GPRS must be used on ship in the Barents Sea
 - Prefere to use ships internet communication
- Software
 - LabView
 - PC-anywhere
 - TeamViewer can be operated from iPad and iPhone

MAINTENANCE

holo holo holo l

- High pressure air cleaning in every port visit
 - From 2 to 35 port stops for one trip
 - From 4-6 hours to max 48 hours
- Manual cleaning in start and end harbour
 - Weekly to monthly frequence
 - Acid cleaning when needed
 - Inlet and outlet valves 2-3x year
- Optical deck sensor
 - 3-4x/year inspection and cleaning

CALIBRATION AND CONTROLS

իսիսիսիսիսի

- Salinity/temperature
 - Certified digital term./Control samples minimum 2-4x/year
 - Factory calibration when needed (every 2 years)
- Oxygen
 - Winkler (in harbour/at sea) 4-6x/year
- Turbidity
 - Formazin turbidity standards 1x/year
 - Formazin prepared in house and calibrated according to ISO-EN 7027
- Irradiance/radiance sensor
 - FieldCal lamp 3-4x/year, Yearly control at NIVA NIST reference lamp
 - Factory or external calibration when needed
- Chlorophyll-a fluorescence
 - Algal culture yearly (Skeletonema Costatum, exponential growth)
 - «Field calibration» Chl-a (hplc) water samples monthly/weekly
 - Seasonal calibration
 - Sensor drift control with solid standard introduced from October-12
 TITLE JERICO 11

CHL-A_FL VS CHL-A_HPLC FOR 6 YEARS OF DATA IN THE SKAGERRAK

TITLE - JERICO - 12

FerryBox seasonal and night and day variation

իսիսիսիսիսի

Yearly calibration of the Chl-a fluorescense using all the Chla_hplc water samples

- Most months show the same trend:
 - High ratio at night
 - Lower ratio at daytime

CHL-A_FL / CHL-A (HPLC) VS PAR MEASURED AT DECK

Internet

- Dependency of the downwelling irradiance
- Recommendation to start measure PAR
- Modelling of the Chla_a_fl/Chl-a_conc ratio on seasonal basis
- Goal: To improve the Chla_fluorescence as a proxy for Chl-a

SUMMARY

- Internet communication are a preferable for the operation to be able to access the system
- Maintenance depends much of the system in operation and the access to the installation
- Sensorcalibration and controls are of high importance and must follow the agreed protocols
- Chl-a fluorescence as a proxy for Chl-a can be improved using seasonal calibration of the Chl-a_fl/Chl-a ratio.