hilululul

JOINT EUROPEAN RESEARCH INFRASTRUCTURE NETWORK FOR COASTAL OBSERVATORIES

BIOFOULING PROTECTION FOR OCEANOGRAPHIC SENSORS

Best Practices Workshop

L.Delauney I Ifremer RDT I laurent.delauney@ifremer.fr

Jerico GA & BPW I Heraklion I Crete – Greece


We are playing in an In Situ marine context !

A tough medium... isn't it ?

Photo : Ifremer (PR) L. Delaurey

Coastal monitoring Three months maintenance

A matter of energy and accessibility

Coastal monitoring Three months maintenance *A matter of energy and accessibility*

Coastal Monitoring Three months maintenance **A matter of energy and accessibility**

Station Marel-Carnot

. I want

Photo : Ifremer (FR)

Seafloor observatories in Europe

Azores seafloor observatory 1700m deep, hydrothermales sources Energy provided by batteries A matter of energy and <u>accessibility</u>

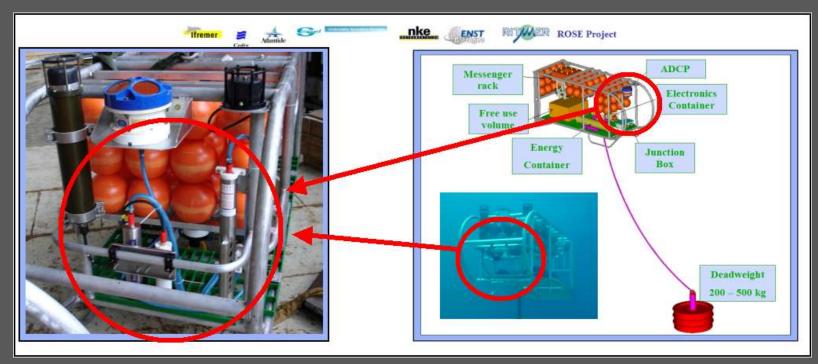
12 months maintenance

1

MOMAR-D – Tempo mini

NEPTUNE Canada Seafloor Observatory

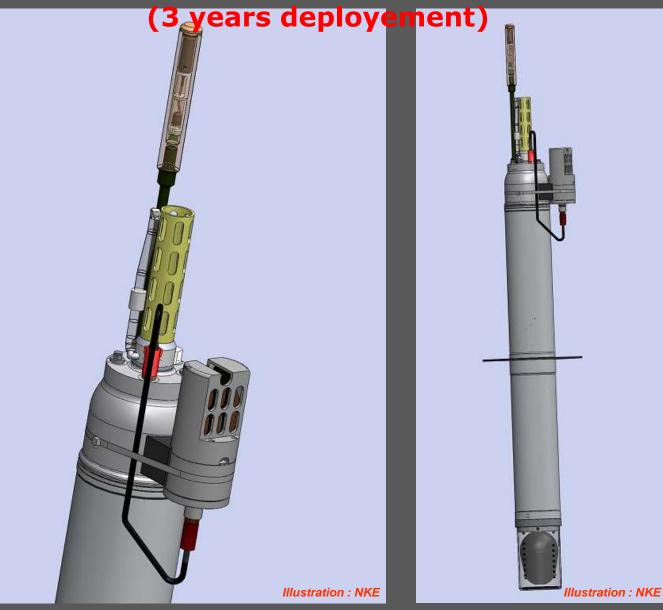
800 km - 40 to 2500m deep


Maintenance every 6 months, Cabled energy but limited !

Conceptual Overview of the NEPTUNE Canada network infrastructure (Roll over the legend for additional information. Note: illustration is conceptual only and not drawn to scale.)

Marine Benthic Observatories for HC leaks detection.

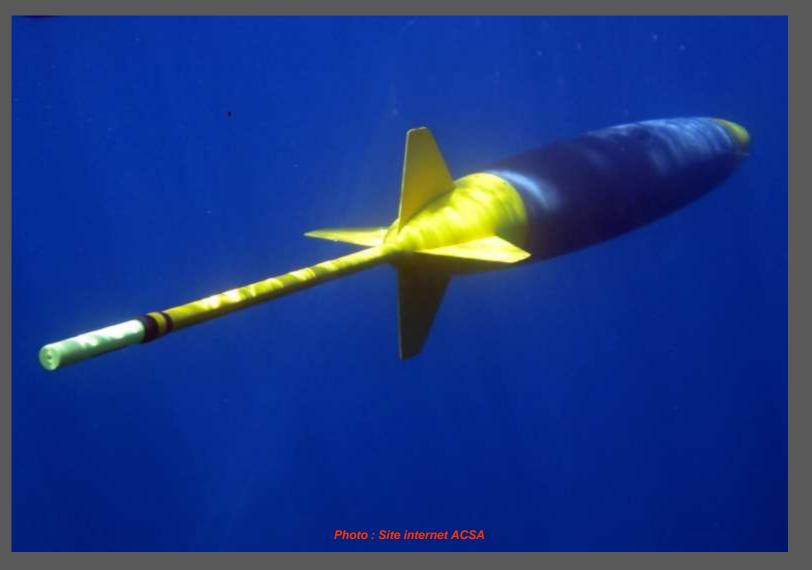
- Various depth (from 15 meters down to whatever needed)
- Long term monitoring (more than 1 month)
- Low maintenance (In fact, No maintenance)



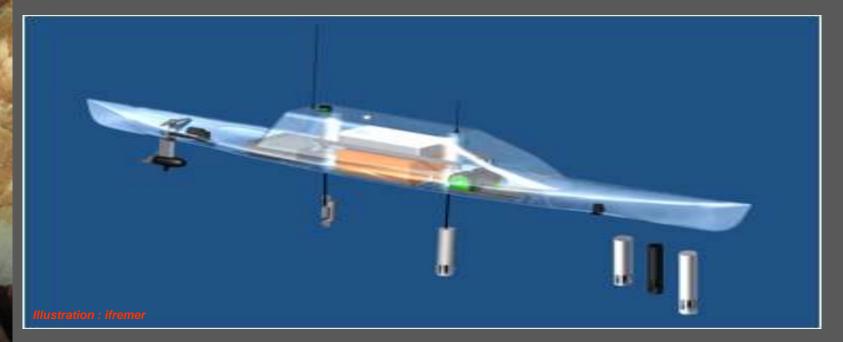
Oceanographic sensor are involved (ROSE Project) :

- > Hydrocarbon fluorometer : Trios EnviroFlu-HC (*)
- > 2 Turbidity Meters : WET labs BBRTD-226R / D&A OBS 3
- > O2 Optode Sensor : Aanderaa 3830 (+ temperature)
- > CTD : SBE 37SMP
- > ADCP : RDI 300 kHz

Floats

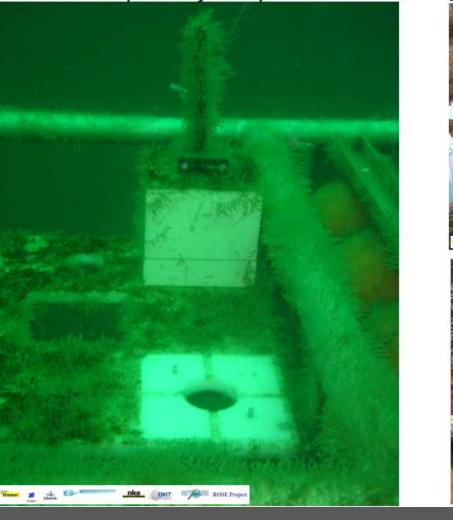

Very low energy available, NO maintenance

Projet NOSS : NKE, Telecom Bretagne, SHOM, ifremer


Gliders

Very low energy, no maintenance Few days deployment (usually)

Scientific drones – USV Mobesens


Low Energy, No maintenance One day deployment

Sensors and biofouling

Marine Benthic Observatories.

After one month (June-July - 25 m)

After three months (June-Sept. - 25 m)

Photos : Ifremer (FR)

Biofilm development must be taken into acount ...

Biofouling example

YSI 6600 EDS (Extended Deployment System) - Clean SweepTM 150 days ♦ April - Sept 2005 ♦ St Anne Portzic Brest

Biofouling example

YSI 6600 EDS (Extended Deployment System) - Clean SweepTM 150 days ♦ April - Sept 2005 ♦ St Anne Portzic Brest

Optisens Transmissometer 90 days ♦ August - October 2005 ♦ Trondheim

Biofouling example

Seapoint Fluorometer 90 days ♦ May - July 2006 ♦ Brest

Biofouling example

70 days 🔶 June - August 2005 🔶 Helgoland - DE


Ifremer (FR) L. Delauney Y. Faijan GKSS (DE) K. Kröeger et Al. - CNRS UPR15 (FR) H. Cachet et Al.

Materials and shape shoud be choosed very carefully in order to reduce fouling attachement.

40 days 🔶 August - October 2005 🔶 Helgoland - DE

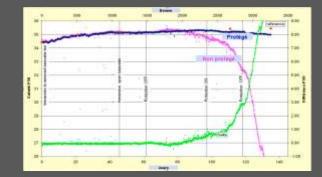
Photos : Ifremer (FR) L. Delauney

Biofouling effect on marine sensors : Progressive interface modification.

Optical sensors : turbidimeter, fluorometer, ...,

=> optical property modification (Window opacity, interferences, ...

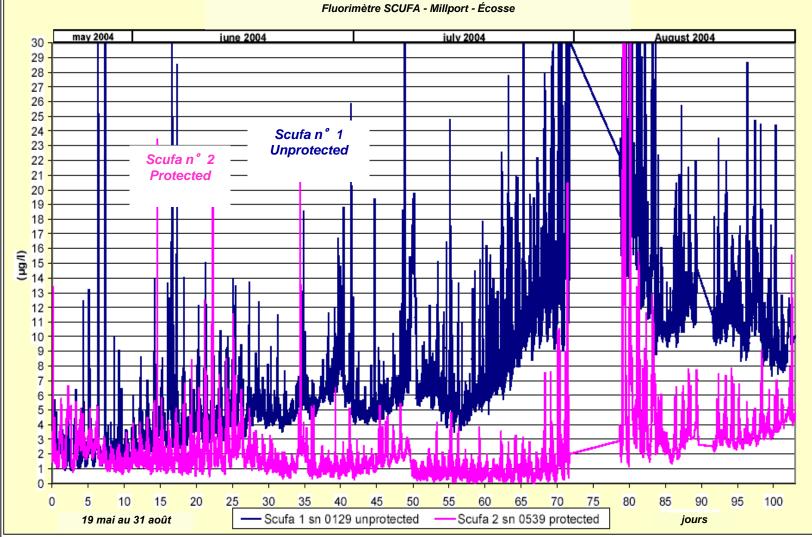
Atlantic Ocean


Bosphorus strait

Baltic sea

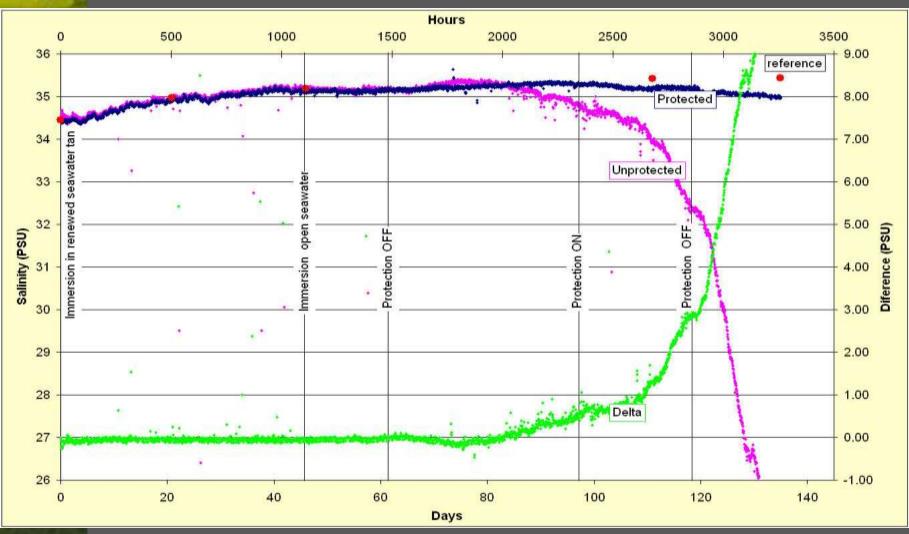
Membrane based sensors : pH, oxygen.

=> membrane permeability modifications.


Loss of sensibility, drift, response time, etc.

This problem must be treated as long as autonomous measurement longer than 1 week is involved.

Biofouling effect on an in-situ Fluorometer


100 days 🔶 19 may - 31 August 🔶 Millport

Ifremer (FR) Delauney, V.Lepage - UMBSM (UK) Dr P. Cowlie

Sensor deviation example : conductivity

133 days 🔶 03 June - 16 October 2003 🔶 St Anne Portzic Brest

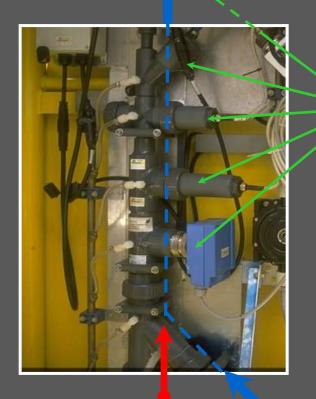
Conductivity Measurement - TPS35 Micrel Instrument

Objectifs

The protection system must delay the biofouling effect on the response of the measuring system for at least 1 month in severe conditions and for 3 months in average condition.

For specific applications like deep sea observatories, biofouling protection effect should last for at least 6 months.

- The protection system should be compatible with autonomous energy supplying (batteries).
- The protection system must be adaptable quite easily on existing instrumentation.
- > The protection system must not affect the measurements produced.


Protection strategy

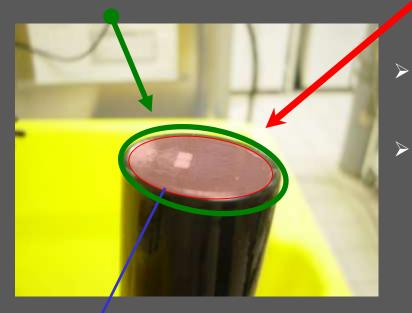
To be closer as possible to the transduction interface

Global Protection

> Pumping is needed

Water Outlet

Sensors


Photos : Ifremer (FR)

MAREL - Ifremer Mesures Automatisées pour l'environnement littoral (Autonomous Measurement for Coastal Environment)

Local Protection

Sensor Head

Pumping system not needed

 Biocide is produced as close as possible of the sensing element of the instrument.

Interface Modification Glass window coated with a specific material in order to generate biocide on the surface (Work in progress)

Coated window Protection

Sensor transducing interface

TriOS microFlu-chl

Biocide zone

- > Optical sensor, camera, lights, ...
- Biocide generation is situated on the window surface.
- > Biocide quantity needed is very low.

Existing biofouling protection for optical oceanographic sensors and conductivity sensors

Mechanical Protection

YSI 6600 EDS (Extended Deployment System) - Clean SweepTM

Mechanical Protection ZEBRA-TECH (NZ) – Hydro Wiper

Photos courtesy of MScience Pty Ltd, Australia

Photo courtesy of NIWA, New Zealand

Photo courtesy of USGS, Santa Cruz

Photos : Zebra-Tech Web Site

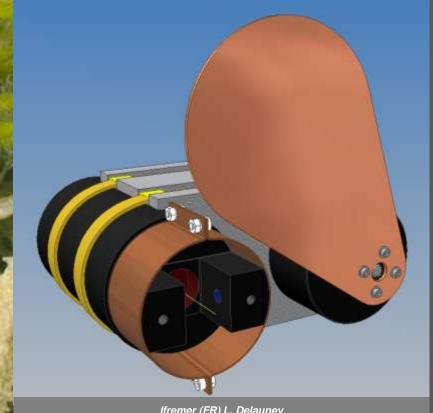
Mechanical Protection ZEBRA-TECH (NZ) – Opto Shutter

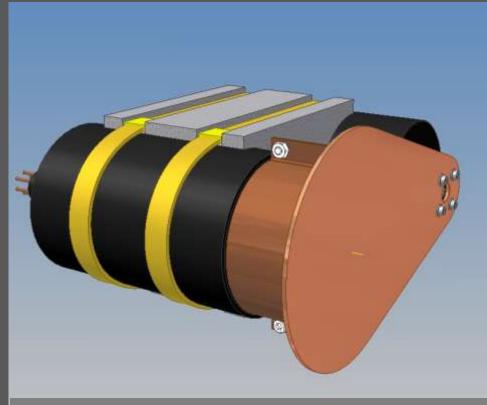
D-Opto dissolved oxygen sensor with Shutter fitted

Shutter closed

Shutter open

Photos : Zebra-Tech Web Site


ZEBRA-TECH (NZ) – Opto Shutter


Film : Courtesy of NORTEKMED

Copper Biofouling protection

Fluorimeter Seapoint + Hobilabs Hydroshutter

Ifremer (FR) L. Delauney

Ifremer (FR) L. Delauney

The instrument must be customised in order to build a Copper cell.

 The Hydroshutter must be controlled by an external unit in order to open and to close it.

Copper Biofouling protection

Fluorimeter Seapoint + Hobilabs Hydroshutter

Biocide diffusion tablet Seabird conductivity sensor => TBT

Projet NOSS : NKE, Telecom Bretagne, SHOM, ifremer

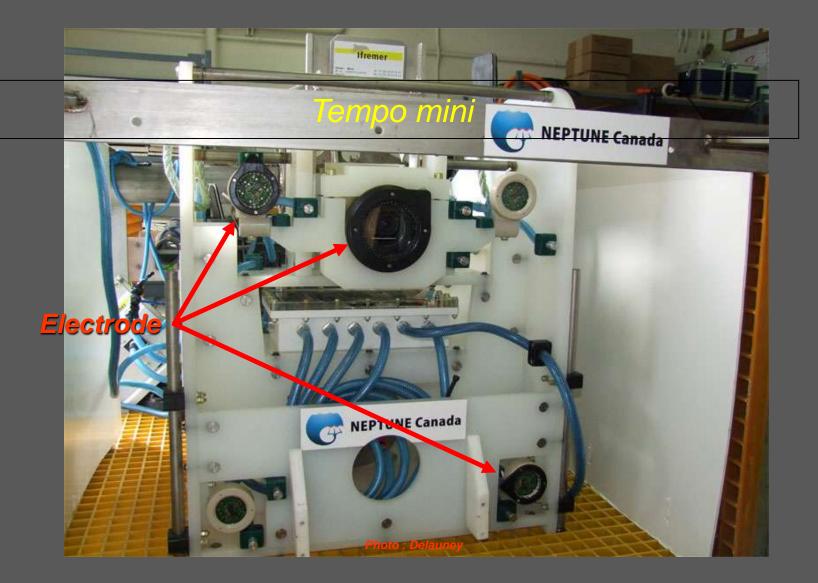
Coated window Protection Trios – Nano coating on windows

- high sensitivity
- wide operation range
- nano coated windows against fouling
- fast acquisition
- electronic daylight compensation
- miniaturized design
- low power consumption
- low cost
- easy to handle
- RS232 interface
- fully RS232 controllable
- 0..5V analog output
- Windows software for PC access
- controllable with handheld or TriBox2

Nano Coating spray YSI - Anti-fouling C-Spray Protective Probe Solution

Biofouling protection Local chlorination (ifremer)

Small windows protection


ROSE Experiment results Benthic station – June to September 2006 - 25 meters deep

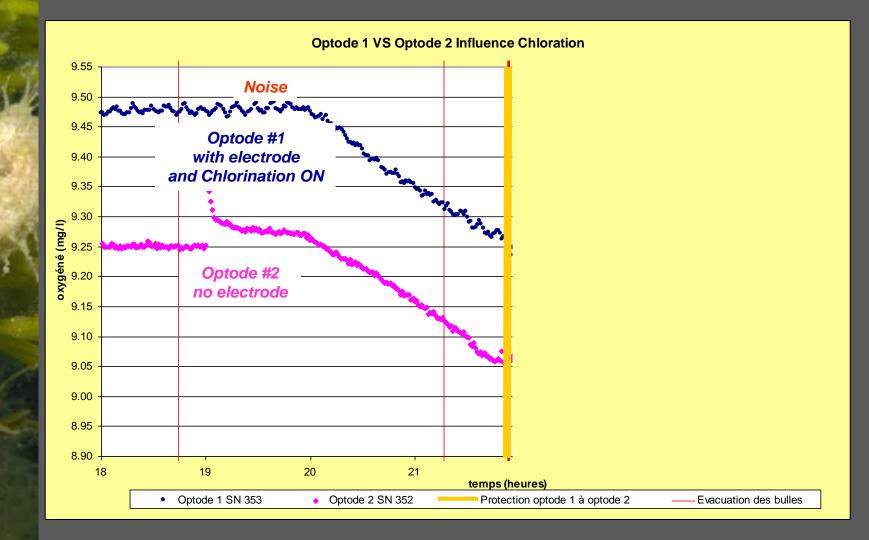
• Hydrocarbon fluorometer : Trios EnviroFlu-HC

Biofouling protection Local chlorination (ifremer)

Large windows protection

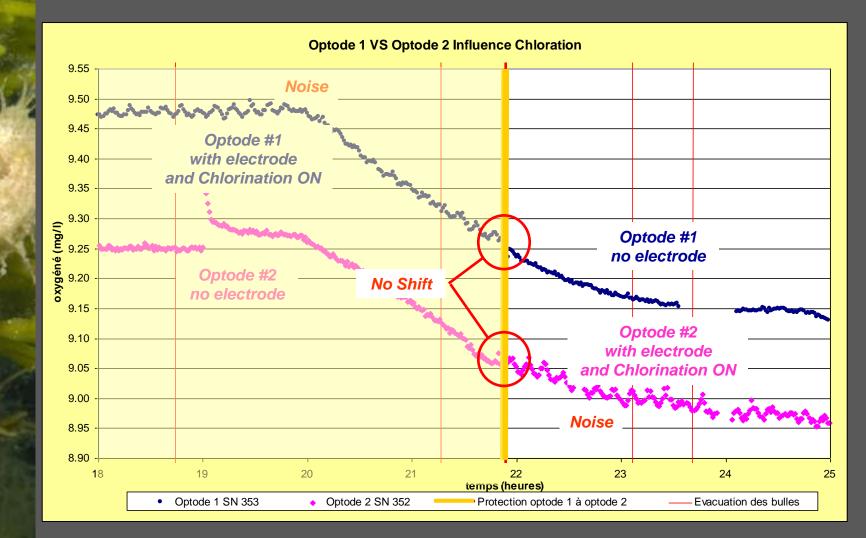
Electro chlorination by Coated window Protection

40 days ♦ August - October 2005 ♦ Helgoland - DE


Ifremer (FR) L. Delauney Y. Faijan GKSS (DE) K. Kröeger et Al. - CNRS UPR15 (FR) H. Cachet et Al.

Adverse effect on sensor measurement

One example


Local Chlorination Adverse effect, laboratory check

Oxygen Measurement – Optode Aanderaa instrument

Local Chlorination Adverse effect, laboratory check

Oxygen Measurement – Optode Aanderaa instrument

- Main techniques available to protect sensors:
 - Wipers
 - Copper and copper shutter
 - Bleach (biocide injection)
 - Local chlorination

• The choice can be driven by different aspects :

Hardware matter :

- Robustness (depth of use)
- Mechanical complexity
- Easiness of adaptation to the existing instrument
- Level of integration

Metrological aspect :

- Adverse effect to the measured parameter.
- Is system can be turned on and off.

- Availability on the market.
- Price.

- Main techniques available to protect sensors:
 - Wipers 3/5 (endurance problem of the wiper material)
- The choice can be driven by different aspects :
 - Hardware matter :
 - Robustness (depth of use) : 2/5
 - Mechanical complexity : 2/5
 - Easiness of adaptation to the existing instrument : 2/5
 - Level of integration : 2/5

Metrological aspect :

- Adverse effect to the measured parameter : 5/5
- Is system can be turned on and off : YES

- Availability on the market : YES (adaptable as well) - Price : 3/5
- Suitable for Optical sensors.
- Pay attention on the soft material used for the wiper.

- Main techniques available to protect sensors:
 Copper : 3/5
- The choice can be driven by different aspects :
 - Hardware matter :
 - Robustness (depth of use) : 5/5
 - Mechanical complexity : 4/5
 - Easiness of adaptation to the existing instrument : 3/5
 - Level of integration : 5/5

Metrological aspect :

- Adverse effect to the measured parameter : 3/5
- Is system can be turned on and off : NO

Economical aspect :

- Availability on the market : YES
- Price : 3/5

Suitable for Optical and conductivity sensors
Adverse effect for oxygen sensor

- Main techniques available to protect sensors:
 Copper shutter : 3/5
- The choice can be driven by different aspects :
 - Hardware matter :
 - Robustness (depth of use) : 2/5
 - Mechanical complexity : 2/5
 - Easiness of adaptation to the existing instrument : 2/5
 - Level of integration : 1/5

Metrological aspect :

- Adverse effect to the measured parameter : 3/5
- Is system can be turned on and off : NO

- Availability on the market : YES
- Price : 2/5
- Suitable for Optical sensors
 Adverse effect for oxygen sensor

- Main techniques available to protect sensors:
 Bleach (biocide injection) : 4/5
- The choice can be driven by different aspects :
 - Hardware matter :
 - Robustness (depth of use) : 2/5
 - Mechanical complexity : 2/5
 - Easiness of adaptation to the existing instrument : 2/5
 - Level of integration : 1/5

Metrological aspect :

- Adverse effect to the measured parameter : 3/5
- Is system can be turned on and off : YES

- Availability on the market : YES (but not as a kit) - Price : 2/5
- Suitable for every sensors
- Adverse effect for sensor if badly flushed

- Main techniques available to protect sensors:
 Local chlorination : 4/5
- The choice can be driven by different aspects :
 - Hardware matter :
 - Robustness (depth of use) : 5/5
 - Mechanical complexity : 3/5
 - Easiness of adaptation to the existing instrument : 4/5
 - Level of integration : 3/5

Metrological aspect :

- Adverse effect to the measured parameter : 4/5
- Is system can be turned on and off : YES

Economical aspect :

- Availability on the market : YES
- Price : 3/5

• Suitable for every sensors

• Adverse effect on oxygen, can be turned OFF.

- Main techniques available to protect sensors:
 - Local chlorination on coated windows : 4/5
- The choice can be driven by different aspects :
 - Hardware matter :
 - Robustness (depth of use) : 5/5
 - Mechanical complexity : 4/5
 - Easiness of adaptation to the existing instrument : 2/5
 - Level of integration : 5/5

Metrological aspect :

- Adverse effect to the measured parameter : 3/5
- Is system can be turned on and off : YES

- Availability on the market : NO (still in developpement)
 Price : -
- Suitable for optical sensors
- No Adverse effect, can be turned OFF.

Thank you for your attention.

