Altimetry / Sea Level

Sea Level Copernicus Marine Service Thematic Assembly Center

Vinca Rosmorduc, CLS / CMEMS Sea Level TAC
What are we observing?
Spatial scales

- **10,000 km**: Ocean oscillations (El Niño, Pacific Decadal Oscillation, North Atlantic Oscillation).
- **1,000 km**: Major currents (Gulf Stream, etc).
- **100 km**: Eddies, tides.
- **10 km**: Waves, cyclones, storms.

Jerico Next Malta Summer School 2018 Operational Oceanography for Blue Growth
Time scales

- **1 century**
 - Variations in global mean sea level.

- **10 years**
 - North Atlantic Oscillation
 - Pacific Decadal Oscillation;
 - Recurrence of phenomena such as El Niño.

- **100 days**
 - Seasonal variations.

- **10 days**
 - Variations in typical eddies.

- **1 day**
 - Variations due to tides, winds, eddies in areas of major activity, storms and cyclones.
Varying amplitude

Geoid undulations:
Amplitude of a several tens of metres.

Major western boundary currents:
Amplitude of about 1 metre.

Mesoscale circulation:
Amplitude of about 1 decimetre.

The amplitude of the phenomena observed ranges from a few tens of metres to several millimetres for the mean sea surface height signal.
What can altimetry show?

Eddies (e.g. Kuroshio)

Eddies along Australian coasts (mean over July)

Eddies in the Gulf Stream
11 February 2004

Ierapetra gyre

School 2018 Operational
or Blue Growth
What can altimetry show?

El Niño

La Niña

El Niño 2001-2003: longitude-time diagramme
What can altimetry show?

Variance in the Gulf Stream

The Gulf Stream (with a turtle)

Jerico Next Malta Summer School 2018 Operational Oceanography for Blue Growth
What can altimetry show?

Mean Sea Level variations

Ocean Monitoring Indicators – Sea Level
Some definitions & acronyms...

SSH: Sea Surface Height in altimetry, tacitly, SSH with respect to the reference ellipsoid.

SLA: Sea Level Anomalies (also **SSHA**) (aka sea surface height with respect to a mean sea surface; seasonal variation not removed)

MSS: Mean Sea Surface (multi-year mean of SSH) [reference surface]

ADT: Absolute Dynamic topography (sea surface height with respect to the geoid); often called SSH

MDT: Mean Dynamic Topography [reference surface]

MSL: mean sea level (global geographical mean of the sea level, monitored cycle by cycle)

Reference ellipsoid: mathematical surface approximating the ocean surface.
How it works?
13 GHz to 35 GHz
Altimetry is **not** imagery...(for now)

NB. basically altimetry data are “along-track”, i.e. a narrow thread of measurements just beneath the satellite.
Satellite coverage

Altimetric satellites only measure perpendicularly below their orbital position ➔ ‘linear’ measurement.

- With a single satellite the orbit parameters can be selected to improve either spatial or temporal revisit frequency:
 - Narrow spatial coverage implies that the satellite passes infrequently over the same point.
 - Frequent revisit coverage implies a broad spatial coverage.

- Several satellites making simultaneous measurements are essential for obtaining a global view of ocean dynamics.

T-P and Jason orbits:
- Priority for temporal coverage.
- 10-day revisit capability.
- Observe large-scale signals.

ERS/Envisat/Saral/ Sentinel-3 orbits:
- Priority for spatial coverage.
- 35-day revisit capability (27 days for S3)
- Observe small-scale signals: eddies.
How it works? (simplified)

- Measure travel time, $2T$, from emit to return
- $h = T \times c$
 ($c \approx 3 \times 10^8 \text{ m/s}$)

- Sea Surface Height is the difference between h ("range") and the altitude.
 $\text{SSH} = \text{altitude} - \text{range}$
Altimetry: not “only” sea surface height

• The main output expected from altimetry is the “sea surface height” (and its variations) However, it is not the only one:
 – Significant **wave height** is deduced from the fact the radar wave bounces on the wave crests before the wave troughs
 – **Wind speed** is deduced from the dispersion of the radar wave
 – Other water bodies level can be measured (**lakes**, **rivers**… provided the satellite flies over them)
 – As well as ice (**sea ice** or **ice sheets**, provided the satellite flies over them)
 – And even some “solid land” can provide with interesting results (deserts, and snow-covered areas)
Limitations / Advantages

• Limitations
 – Resolution: measures only along the precise orbit repeat track
 ➔ Merging satellite data
 – Detects only the variable signal
 ➔ An independent measure of gravity and/or mean currents is needed
 – Not fully reliable in coastal areas (improvement ongoing)

• Advantages:
 – non sensitive to clouds
 – High precision, unremitting work on product accuracy
 – Integrated measurement (the whole water column)
 – Database since 1978 (Seasat); continuous intercalibrated series since 1991 (ERS-1) / Oct. 1992 (Topex/Poseidon)
 – Almost always at least 2 simultaneous satellites since 1992
Coastal altimetry

• What is observed might be unclear (water/land mixed)
• Corrections not optimized over lands (radiometer)
• SAR altimetry much better than classical
• Processing to improve

Credits P. Thibaut, in Gommenginger et al., 2011
How it works (less simplified)

Sea Surface Height (SSH) (relative to an earth ellipsoid) = Orbit height – Range

Corrections applied:
- instrumental
- water in the troposphere
- electrons in the ionosphere
- atmosphere
- atmospheric pressure (inverse barometer)
- sea state bias (wave crests and troughs)
- tides (ocean, solid Earth, pole)
• Now, you may think I’ve missed something, since you may have seen maps from altimetry.

Yes. They exist.
But they’re not made directly from the measurement of one single satellite
Since 1998, the Duacs processing

• In 1998 a European Commission project: Developing Use of Altimetry for Climate Studies. Became in 2003 part of the CNES SSALTO ground segment: Data Unification Altimeter Combination System

• An operational production system

• Two components:
 – Near Real Time: provides operational applications
 – Delayed Time: maintains a consistent record for climate applications

• Since 2008, the backbone for the Sea Level production center for the Copernicus Marine Service (CMEMS) & now also Climate Change Service (C3S)
Step 1: Homogenization
Orbit, references, instrumental & geophysical corrections, consistent editing ➔ Multi-mission CAL/VAL

Step 2: Cross-calibration
Orbit error, de-alias HF variability, remove multi-mission biases, filtering...

Step 3: Multi-altimeter merging

Step 3: Post processing of maps

Complex altimetry-centered products (50+ parameters)
Non homogeneous dataset

CMES (Copernicus Marine Service)

- **Global & Europe Operationally produced for**
- **Directly usable ocean topography** content
- **Error-free datasets** (data improvement & empirical cross-calibration)
Homogeneization and Cross-calibration

Sea Level Anomaly on May 12-14th 2014 (unit: cm)

Complex product: spurious data, noise...

Mission bias, orbit error...

Saral

HY-2A

Jason-2
• exercise:
 00_dataDownload.ipynb
 04_L3 along-track.ipynb
 04_SWH L3 along-track.ipynb

Retrieve data on CMEMS servers
Look at intercalibrated along-track data;
Select an area and save it in a file
Look at SWH from altimetry data
Editing: detect and remove the erroneous measurements. This a critical process!
• Various algorithm applied
• Automated editing tuned for open ocean application => reject a small % of the dataset
Step 2a : Reduction of the crossover differences

• **Purpose**: Reduce orbit error and ensure coherence between different altimetric missions by using the most accurate mission as a reference to correct the others.

• **Method**: Estimation of errors with a cubit-spline estimator (*Le Traon and al.*, 1995, *JAOT 12*)

At a same point (crossover) and within less than 5 days, the difference in measured SLA is considered as a mono-mission or multi-mission orbit error. Smooth cubic-spline functions provide a continuous estimation of the orbit error over time.
Maps of sea level anomalies from altimetry satellites on February 2013 Using Jason-2 and Cryosat (CPP)

Detection and monitoring of centimeter-level uncertainty at basin scale and monthly scale needed to be minimized optimally in DUACS
Assimilating L3 in ocean models is straightforward (content directly usable)
Multi-altimeter merging

- Goal of the mapping procedure:
 Construct a **regular-gridded** data set merging along-track SLA data from different altimetry missions, taking into account the errors due to the measurement imperfections.
- Multimission merging is based on an **optimal interpolation** using an a priori knowledge of the covariance of the sea level and the measurement errors.

NB. gridded data available in CMEMS by mid-January 2016.
Sea Level Anomaly on March 1-4, 2017
From Sentinel-3, Jason-3, Saral, Cryosat-2, Jason-2
Step 3: Multi-altimeter merging

Actual coverage from 4 altimeters (10 day-period)

Jason1 + Jason2 Map

Gridding a.k.a inversion

Cryosat + ENVISAT

Jerico Next Malta Summer School 2018 Operational Oceanography for Blue Growth
Sea Level Anomaly on May 12-14th (cm)
From Jason-2, Altika, Cryosat-2 and HY2A
Sea Level Anomaly Map on May 13th (cm)
From Jason-2, Altika, Cryosat-2 and HY2A
Perspectives

- new experimental Duacs products on Aviso (Cnes) center, making the most of Sentinel-3 capabilities
- Derived products & experimental ones
- Next challenge: Swot satellite (2021)

mean Eddy Kinetic Energy (EKE) [12/04/2014-31/12/2015] : operational (top), new experimental computed with Dynamic Interpolation (middle) and the difference between the two (bottom) where red color indicates areas of higher energy. Credits CNES/CLS. (www.aviso.altimetry.fr)
SWOT: altimetry will be imagery in 2021

- Surface Water and Ocean Topography
- Nasa/Cnes/UKSA/CSA
- Swath interferometer, with a nadir (classical) altimetry in the middle
- Coastal abilities
- Launch planned in April 2021

Jerico Next Malta Summer School 2018 Operational Oceanography for Blue Growth
- exercise:
 05_L4 grids.ipynb
 use and plot some gridded files

- exercise:
 06_using grids.ipynb
 06_using grids-geostr_vel.ipynb
 compute some things with those grids