Monday

Monday – morning chair Arjen Kees: 9-15 Anouk:9-13	 9:00 – 9:45 Welcome Introduction to course (by Arjen), Intro Kees 9:45 – 10:30 Introduction to JERICO-next (by Anouk) Coffee break 11:00 – 11:45 Introduction to NatureCoast (by Arjen) 11:45 – 12:30 Introduction to coastal observatories (ICON) (by Stefan Aarninkhof)
Monday – afternoon chair Arjen	 •13.30 – 14:45 Students introduce themselves; 2 slides / 3 min pp <i>Coffee break</i> •15:15 - 16:00 Objectives of marine monitoring (<i>by Marcel Taal</i>) •16:00 - 17:00 Introduction into MSFD and monitoring (<i>by Theo Prins</i>)

Tuesday

chair 9:3 Anouk	:30 – 10:30 Phytoplankton analysis (by Felipe Artigas)
Tuesday –10afternoon12Chair:13Roeland14	 0.45 - 12.15 Drifter measurements (going to the beach) 2.15 - 13.00 Lunch 3.00 - 14.00 Presentation working with instruments and ZM monitoring 4:00 - 16:00 Split in 3 groups: topo, bathy, dune lake

Wednesday

Wednesday	Data interpretation
– morning	•9:00 – 9:45 Introduction into data processing (by Fedor Baart)
Chair:	•9:45 – 10:30 MSFD - eutrophication (by Anouk)
Anouk	Coffee break
Start I	•11:00 – 11:45 Example of SEACAMS project (Wales) on marine renewable
2	energy (Dave Mills (Bangor University))
+ 3124	•11:45 – 12:30 Exchange monitoring results of Tuesday by student groups
Wednesday	Integration of multidisciplinary data: (whole afternoon by Genna)
– afternoon	•14.00 - 14.30 Introduction
Chair:	•14.30 - 15.15 Exercise integration of satellite data with google earth engine
Genna	Coffee break
There	•15:45 - 17:00 Hands-on exercise
CAR AST.	

Introduction to data management:
•9:00 – 9:45 European data landscape - EMODNET
•9:45 – 10:30 Data management and sharing - Gerben de Boer
Coffee break
•11:00 – 11:45 Archiving and publishing citable data - TUD
•11:45 – 12:30 Portals for data dissemination - Willem
Integration of multidisciplinary data (Arjen)
•14.00 - 14.45 Introduction on linking different types of data & disciplines
•14.45 - 15.30 Integrated NatureCoast findings (by postdocs)
Coffee break
•16:00 - 17:00 Analysis of multidisciplinary data

Friday

Friday –	•9:00 – 10:30 Analysis of multidisciplinary data (con't)
Chair: Kees	Coffee break
	•11.00 - 11.45 Present results of analysis of multidisciplinary data
19/	•11:45 – 12:30 Wrap- up & evaluation (Kees)
	•Lunch ending at 14.00

Who are we?

Anouk Blauw

Kees den Heijer

Arjen Luijendijk

Monday

Monday – morning chair Arjen	 9:00 – 9:45 Welcome Introduction to course (by Arjen), Intro Kees 9:45 – 10:30 Introduction to JERICO-next (by Anouk) Coffee break 11:00 – 11:30 Introduction to NatureCoast (by Arjen) 11:30 – 12:15 Introduction to coastal observatories (ICON) (by prof. Stefan Aarninkhof of Coastal Engineering of TU Delft)
Monday – afternoon chair Arjen	 •13.30 – 14:45 Students introduce themselves; 2 slides / 3 min pp <i>Coffee break</i> •15:15 - 16:00 Objectives of marine monitoring (<i>by Marcel Taal</i>) •16:00 - 17:00 Introduction into MSFD and monitoring (<i>by Theo Prins</i>)

Who am I?

- Arjen Luijendijk
- Deltares (2002) & TU Delft (2010)

- Background: Sr. Coastal Engineer at Deltares.
 - Coastal morphology modelling
 - International project experience
 - BwN Holland Coast and Zandmotor.
 - Model coupling: subaerial and subaqueous

NatureCoast project

Title: Physical feasibility of mega-nourishment concepts worldwide

Postdoc - Physical system

- Identify promising locations worldwide
- Solutions in local context
- Explore export potential based on coastal dynamics using satellite images

PhD – Seamless modelling

- Coupling models for sandy solutions
- Promotor: Stive & Aarninkhof

Focus: Integrate multi-disciplinary knowledge and experience in exploring international opportunities

Universiteit Utrecht

UNIVERSITEIT TWENTE.

Deltares: facts and figures

- Legal form: not-for-profit organisation
- Approx. 800 fte
- Annual turnover of € 100 million
 - 50% government
 - 50% market
- Serves the public and private sector
- National (60%) and international activities (40%)
- Exact sciences, integrated with social sciences

Flood risk Ecosystems and environmental quality Water and subsoil resources Delta infrastructure Sustainable delta planning

Deltares

Deltares

Sand Engine A nature-driven mega-nourishment

JERICO Summer school 19 – 24 June 2017

Outline

- 1. Introduction Dutch Coast
- 2. Design Sand Engine & construction
- 3. Monitoring
- 4. Knowledge development
- 5. Is it transferable?

1. Introduction Dutch Coast

Safety against flooding

Natural dunes

Holland Coast: Policy context

Shortage of natural sediment

Consequence: Structural erosion

Solution: Nourishments (10-15 mln m3/yr)

Climate change - sea level rise

Upscaling nourishment volumes

	2.5.5				
		A		1	
					12
matized sand			a ,*		1
port and shment volumes	1.				
rise.	Growing with se	a level:			
	Sea level rise	18	60	85	cm/century
	Holland coast	+7	+23	+33	
	Waddenzee	+4.5	+15	+21	
	Westerscheldt	+0.5	+1.7	+2.4	1
15	Total nourishme	nt			-
	volume	12	40	57	Mm ³ /year

Increase in nourished volumes

Dynamic preservation of the 1990 coastline

Sand volumes:

- Since 1990: 6 mln m3/yr
- Since 2001: 12 mln m3/yr

Terschelling/2

8,25 min m³

995 1993 199

Tendency towards larger-scale nourishments

Uncertainties on environmental effects

Need for space (nature & recreation)

Outline

- 1. Introduction Dutch Coast
- 2. Design Sand Engine & construction
- 3. Monitoring
- 4. Knowledge development
- 5. Is it transferable?

Delfland coast

201 Barry Pro.

2005

Waves: Mean Hs = 1.3 m Annual storm Hs ~ 4 m

Tidal currents: 0.5 – 0.7 m/s

Groyne field (68)

Nourishment volume 2001 – 2011. 1 mln m³ / yr; frequency of 4–5 years

Challenge for Province

Shortage on natural recreation areas

Challenge for Ministry of Public Works

Let's try a pilot that combines the wishes of different stakeholders

Now experimenting with the Sand Engine!

a)

Different designs

• submerged:

clock:

hook:

Pilot Zandmotor – final design

- Reduce frequency, upscaling of volumes
- Surplus of sand, distribution by tide, wind and waves

Sand mining

de stande

2011: 21,5 mln m³

5 km

9

8

6 5 4

3

2

0 -1 -2

-3 -4 -5 -6 -7

-8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19

-20 -21 -22 -23 -24

March 28th 2011

May 24th 2011

June 28th 2011

Ambitions Sand Engine

enhanced safety against flooding

cheaper per m3 compared to traditional nourishments
 (but: costs brought forward → interest!)

longer period between consecutive nourishments

ecologically interesting intermediate stages

- beach lagoons, juvenile dunes, pioneer vegetation
- recreation potential
- wider dune area
 - increased freshwater reserve

Outline

- 1. Introduction Dutch Coast
- 2. Design Sand Engine & construction
- 3. Monitoring
- 4. Knowledge development
- 5. Is it transferable?

Extensive monitoring campaign...

Enabling Delta Life

EcoShape

Extensive monitoring campaign...

Macrobenthos:

Fish

Birds

Sea mammals

Deltares

EcoShape

Enabling Delta Life

Vegetation

Insects

ŤUDelft

Evolution morphology

Bodemligging Zandmotor, survey August 2011

Evolution and volume changes

EcoShape

Deltares

Enabling Delta Life

TUDelft

Evolution and volume changes

How will it evolve?

Using a process-based model

Computed bathymetry after 0.25 years

Challenge the future 41

Monitoring: Argus video

Observations: Recreation and Nature

Challenge the future 43

Outline

- 1. Introduction Dutch Coast
- 2. Design Sand Engine & construction
- 3. Monitoring
- 4. Knowledge development
- 5. Is it transferable?

NatureCoast

- STW project of 5.5 mln euro
- Interdisciplinary science project
- 6 universities, 15 PhD researchers
- Strong involvement of end-users

NatureCoast

- STW project of 5.5 mln euro
- Interdisciplinary science project
- 6 universities, 15 PhD researchers

Universiteit Utrecht

- Strong involvement of end-users
- Create generic understanding of Sand Engine evolution in order to develop innovative sandy strategies worldwide

MonitorUnderstandCreateImage: Stand St

UNIVERSITEIT TWENTE.

Interdisciplinary research

-2

m. hoog '

• Coastal Safety

latertiin bii

 $\mathfrak{A}^{\scriptscriptstyle N}$

- Dune formation
- Hydrology and geochemistry

- Marine ecology
- Terrestrial ecology
- Governance

End-users

Challenge the future 48

The roles of the postdocs

Integration

- Phd days, field campaigns, writing week
- Utilization
 - Collaborate with end-users, design workshops, sandy strategies
- Dissemination
 - End user meetings, media, excursions, this symposium, related programs & projects

Arjen Luijendijk TU Delft & Deltares Postdoc on Physical feasibility worldwide

Vera Vikolainen University of Twente *Post-doc on Governance*

Alexander van Oudenhoven CML, Leiden University *Post-doc on Ecosystem services*

Zandmotor features

Understanding its behaviour

Forcing type: Waves Wind Tide

Delt TUDelft Enabling Delta Life

Alonashore

Understanding its behaviour

Integrated morphodynamic model for the dry beach and subaerial

- Intertidal area is resolved by Delft3D and AeoLiS model
- Deposition of dune lake and lagoon is now incorporated in the morphological simulation.

Nature Coast

Arjen Luijendijk, Bas Hoonhout, Rufus Velhorst and Sierd de Vries, Coastal Dynamics, 2017

Outline

- 1. Introduction Dutch Coast
- 2. Design Sand Engine & construction
- 3. Monitoring
- 4. Knowledge development
- 5. Is this concept transferable?

Next Sand Motor in the Wadden Sea?

We can not copy-paste the Sand Engine

The Sand Engine Delfland is an optimal solution for the Delfland Coast.

The start point for comparable solutions should be the context of a local coast having its own:

- 1. ambitions
- 2. governance context
- 3. environment
- 4. eco-system services

- Don't copy-paste but instead:
 - Integrate experience from the Sand Engine in innovative Sandy Strategies
 - Sand Engine concept is tranferable, not Sand Engine Delfland

