<u>Altimetry / Sea Level</u>

Sea Level Copernicus Marine Service Thematic Assembly Center

Vinca Rosmorduc, CLS / CMEMS Sea Level TAC

What are we observing?

Spatial scales

Time scales

Varying amplitude

The amplitude of the phenomena observed ranges from a few tens of metres to several millimetres for the mean sea surface height signal.

⁻ School 2018 Operational or Blue Growth

La Niña

YEAR.

700

400 1300

100

TIME : 22-AUG-2001 00 to 27-SEP-2003 12 Variance in the Gulf Stream

Jerico Next Malta Summer School 2018 Operational

Oceanography for Blue Growth

Some definitions&acronyms...

Reference ellipsoid: mathematical surface approximating the ocean surface .

SSH: Sea Surface Height <u>in altimetry</u>, tacitly, SSH with respect to the *reference ellipsoid*.

SLA: Sea Level Anomalies (also **SSHA**) (aka sea surface height with respect to a mean sea surface; seasonal variation not removed)

MSS: Mean Sea Surface (multi-year mean of SSH) [reference surface]

ADT: Absolute Dynamic topography (sea surface height with respect to the geoid); often called SSH

MSL: mean sea level (global geographical mean of the sea level, monitored cycle by cycle)

MDT: Mean Dynamic Topography [reference surface]

How it works?

Altimetry is not imagery... (for now)

NB. basically altimetry data are "along-track", i.e. a narrow thread of measurements just beneath the satellite

Satellite coverage

Altimetric satellites only measure perpendicularly below their orbital position → 'linear' measurement.

- With a single satellite the orbit parameters can be selected to improve either spatial or temporal revisit frequency:
 - Narrow spatial coverage implies that the satellite passes infrequently over the same point.
 - Frequent revisit coverage implies a broad spatial coverage.
- Several satellites making simultaneous measurements are essential for obtaining a global view of ocean dynamics.

T-P and Jason orbits:

- Priority for temporal coverage.
- 10-day revisit capability.
- Observe large-scale signals.

ERS/Envisat/Saral/ Sentinel-3 orbits:

- Priority for spatial coverage.
- 35-day revisit capability (27 days for S3)
- Observe small-scale signals: eddies.

Sentinel-3 coverage

How it works? (simplified)

• Measure travel time, 2T, from emit to return

• h = $T \times c$ (c $\approx 3 \times 10^8$ m/s)

 Sea Surface Height is the difference between h ("range") and the altitude.
 SSH = altitude - range

<u>Altimetry: not "only" sea surface height</u>

- The main output expected from altimetry is the "sea surface height" (and its variations) However, it is not the only one:
 - Significant wave height is deduced from the fact the radar wave bounces on the wave crests before the wave troughs
 - Wind speed is deduced from the dispersion of the radar wave
 - Other water bodies level can be measured (lakes, rivers... provided the satellite flies over them)
 - As well as ice (sea ice or ice sheets, provided the satellite flies over them)
 - And even some "solid land" can provide with interesting results (deserts, and snow-covered areas)

Limitations / Advantages

Limitations

- Detects only the variable signal
 - ➔ An independent measure of gravity and/or mean currents is needed
- Not fully reliable in coastal areas (improvement ongoing)
- Advantages:
 - non sensitive to clouds
 - High precision, unremitting work on product accuracy
 - Integrated measurement (the whole water column)
 - Database since 1978 (Seasat); continuous intercalibrated series since 1991 (ERS-1) / Oct. 1992 (Topex/Poseidon)
 - Almost always at least 2 simultaneous satellites since 1992

Coastal altimetry

- What is observed might be unclear (water/land mixed)
- Corrections not optimized over lands (radiometer)
- SAR altimetry much better than classical
- Processing to improve

Credits P. Thibaut, in Gommenginger et al., 2011

How it works (less simplified)

Sea Surface Height (SSH) (relative to an earth ellipsoid)= Orbit height – Range

SSH = Orbit – Range – Σ Corr

Corrections applied:

- instrumental
- water in the troposphere
- electrons in the ionosphere
- atmosphere
- atmopheric pressure (inverse barometer)
- sea state bias (wave crests and troughs)
- tides (ocean, solid Earth, pole)

• Now, you may think I've missed something, since you may have seen maps from altimetry.

Yes. They exist. But they're not made directly from the measurement of one single satellite

Since 1998, the Duacs processing

- In 1998 a European Commission project: Developping Use of Altimetry for Climate Studies.
 Became in 2003 part of the CNES SSALTO ground segment: Data Unification Altimeter Combination System
- An operational production system
- Two components:
 - Near Real Time: provides operational applications
 - Delayed Time: maintains a consistent record for climate applications
- Since 2008, the backbone for the Sea Level production center for the Copernicus Marine Service (CMEMS) & now also Climate Change Service (C3S)

Homogeneization and Cross-calibration

Sea Level Anomaly on May, 12-14th 2014 (unit: cm)

Oceanography for Blue Growth

- exercise:
 - oo_dataDownload.ipynb
 - 04_L3 along-track.ipynb
 - 04_SWH L3 along-track.ipynb

Retrieve data on CMEMS servers Look at intercalibrated along-track data; Select an area and save it in a file Look at SWH from altimetry data

Editing: detect and remove the erroneous measurements. This a **critical process**!

•Various algorithm applied

•Automated editing tuned for open ocean application => reject a small % of the dataset

Step 2a : Reduction of the crossover differences

•**Purpose** : Reduce orbit error and ensure coherence between different altimetric missions by using the most accurate mission as a reference to correct the others.

•Method : Estimation of errors with a cubit-spline estimator (*Le Traon and al., 1995, JAOT 12*)

At a same point (crossover) and within less than 5 days, the difference in measured SLA is considered as a mono-mission or multimission orbit error. Smooth cubic-spline functions provide a continuous estimation of the orbit error over time.

Maps of sea level anomalies from altimetry satellites on February 2013 Using Jason-2 and Cryosat (CPP)

Detection and monitoring of centimeter-level uncertainty at basin scale and monthly scale needed to be **minimized optimally** in DUACS

Homogeneization and Cross-calibration

Multi-altimeter merging

- Goal of the mapping procedure: Construct a regular-gridded data set merging along-track SLA data from different altimetry missions, taking into account the errors due to the measurement imperfections
- Multimission merging is based on an **optimal interpolation** using an a priori knowledge of the covariance of the sea level and the measurement errors

Jerico Next Malta Su Oceanogra

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

Sea Level Anomaly on March 1-4, 2017 From Sentinel-3, Jason-3, Saral, Cryosat-2, Jason-2

and HY2A

and HY2A

ght CNESACLS 2013

MEAN EKE CMEMS (cm²/s²)

<u>Perspectives</u>

- new experimental Duacs products on Aviso (Cnes) center, making the most of Sentinel-3 capabilities
- Derived products & experimental ones
- Next challenge: Swot satellite (2021)

MEAN EKE Dynamic Interpolation (cm²/s²)

DIFF MEAN MEAN EKE Dynamic Interpolation-CMEMS (cm²/s²)

mean Eddy Kinetic Energy (EKE) [12/04/2014-31/12/2015] : operational (top), new experimental computed with Dynamic Interpolation (middle) and the difference between the two (bottom) where red color indicates areas of higher energy. Credits CNES/CLS. (www.aviso.altimetry.fr)

SWOT: altimetry will be imagery in 2021

- Surface Water and Ocean Topography
- Nasa/Cnes/UKSA/CSA
- Swath interferometer, with a nadir (classical) altimetry in the middle
- Coastal abilities
- Launch planned in April
 2021

exercise: 05_L4 grids.ipynb use and plot some gridded files

• exercise:

06_using grids.ipynb 06_using grids-geostr_vel.ipynb compute some things with those grids

